
| - |          | - 6    |     |      | -  |
|---|----------|--------|-----|------|----|
| P | Barrie . | mark 2 | 100 | ALC: | п  |
| - | n۱       | 750    | ю   | •    |    |
| - | 883      | 100    |     | •    | ., |

Notes: Pressure and Fluids

Name:

In the first picture on the right, which swimmer is experiencing the greatest 1. water pressure?



In the second picture on the right, who is experiencing the greatest air 2. pressure?



Whether you're in air or water (or any other fluid), the origin of ambient pressure is the same. What creates the air pressure that we're feeling right weight of air fus. now?

Units, Conversions, etc.;

Pressure 
$$(P) = A$$

Density of liquid water = 
$$\rho_{water} = \underline{Ig/ml} = \underline{I000}_{kg/m^3}$$
.

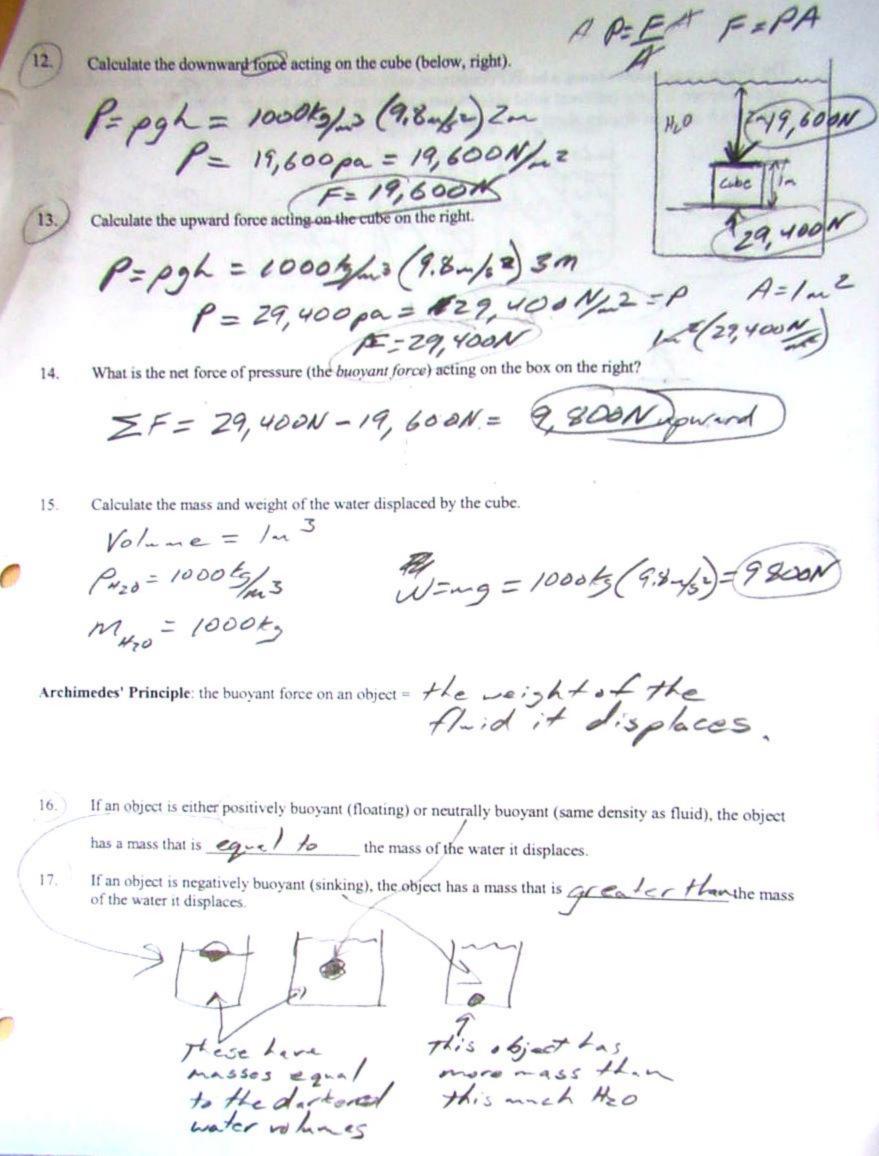
- According to sources, an average human has about 1.8m2 (=2,800 in2) of skin. What total force is pushing against an average human's skin? 188,000 N 40,950 lbs
- 5.



- Why doesn't this force crush us? pressure inside as

  . We have equal pressure inside as

  . pressure pushes from all direction


  . Force is sproad over a large area

  . Vere mostly water, which is a stly incompressible.
- The two people on the right are inside trash bags. One has a vacuum hose inserted in the bag. The other does not. Use arrows to show how the sensation of vacuum packing is caused by air pressure pushing inward from the outside of the bag.





| 2. Explain how a suction cup works.  Air is gneezed out for there is surjected out for the pressure pushing down from the problem in turn the jar upside down? Explain why.  2004 September 1 you fill a jar with water, cover it with a laminated card, and then turn the jar upside down? Explain why.  2004 September 1 years 1 ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | MAN TANK                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------|
| 8. What happens if you fill a jar with water, cover it with a laminated card, and then turn the jar upside down? Explain why.  20045 \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$\$\$\$ \$\frac{1}{2}\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.  | 6443                                                                                |
| 8. What happens if you fill a jar with water, cover it with a laminated card, and then turn the jar upside down? Explain why.  2006 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Air is squeezed out                                                                 |
| 8. What happens if you fill a jar with water, cover it with a laminated card, and then turn the jar upside down? Explain why.  20065 1005  2F=266 1005  2Props  1285=10005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20165 1005  20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | A I HAVE                                                                            |
| 8. What happens if you fill a jar with water, cover it with a laminated card, and then turn the jar upside down? Explain why.  20065 **Fest**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | - I see - such as down from the                                                     |
| turn the jar upside down? Explain why.    20065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | to outside.                                                                         |
| turn the jar upside down? Explain why.    20065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   10065   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.  | What happens if you fill a jar with water, cover it with a laminated card, and then |
| 2 F=20bs  Proof  Proof  Proof  Help = 20bs  Proof  Help = 20bs  Proof  Help = 20bs  Proof  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | turn the iar unside down? Explain why.                                              |
| 9. Calculate the weight of the 3m water column that is positioned directly above the box on the right. Then calculate the pressure on the box's top surface.  P = A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | H20 EF = 0.065) H60                                                                 |
| 9. Calculate the weight of the 3m water column that is positioned directly above the box on the right. Then calculate the pressure on the box's top surface.  P = A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Refore 1/1/ Props                                                                   |
| 9. Calculate the weight of the 3m water column that is positioned directly above the box on the right. Then calculate the pressure on the box's top surface.  P = 3000k (9.8 - /s^2) = 29, 400 pa  10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density p is P = 30. This formula should yield the same answer to #9.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  11. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  12. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  12. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  13. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  14. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  14. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  15. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  16. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  17. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  18. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  19. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  10. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  10. A helium balloon floats upward. Show how it "knows" which way to go.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51: | and weight weight card                                                              |
| 9. Calculate the weight of the 3m water column that is positioned directly above the box on the right. Then calculate the pressure on the box's top surface.  P = 3000k (9.8 - /s^2) = 29, 400 pa  10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density p is P = 30. This formula should yield the same answer to #9.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  11. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  12. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  12. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  13. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  14. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  14. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  15. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  16. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  17. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  18. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  19. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  10. A helium balloon floats upward. Show how it "knows" which way to go.  P = 1000k (9.8 - /s^2) 3 = 29, 400 pa  10. A helium balloon floats upward. Show how it "knows" which way to go.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1 2865= HONOS 20065-Air                                                             |
| the box on the right. Then calculate the pressure on the box's top surface. $P = \frac{F}{A}$ $F = \frac{3000k}{9.8 \text{ s}} = 29,400N$ $P = \frac{29,400N}{1m^2} = 29,400pa$ 10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density $\rho$ is $P = 99^{\circ}$ . This formula should yield the same answer to $\#9$ . $P = \frac{1000k_3}{9} = \frac{9}{9} =$                                                                                                                                                                     |     | 200 Pts A Press.                                                                    |
| 10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density $\rho$ is $P = A$ . This formula should yield the same answer to $H$ 9. $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ 11. A helium balloon floats upward. Show how it "knows" which way to go. $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho a$ $P = 1000 f_3 / (9.8 - / s^2) 3 = 29,400 \rho $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.  | the har on the right. Then calculate the pressure on the box's ton surface.         |
| P= 29, 400 pa  10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density ρ is P = 3h. This formula should yield the same answer to #9.  P= 1000 t <sub>2</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  11. A helium balloon floats upward. Show how it "knows" which way to go.  P= 1000 t <sub>2</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t |     | - JM                                                                                |
| P= 29, 400 pa  10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density ρ is P = 3h. This formula should yield the same answer to #9.  P= 1000 t <sub>2</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  11. A helium balloon floats upward. Show how it "knows" which way to go.  P= 1000 t <sub>2</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t <sub>3</sub> (9, b-/ <sub>2</sub> ) 3 m = 29, 400 pa  P= 1000 t |     | A F = 3000kg (9.8 m/s = 29, 400N                                                    |
| 10. More generally, the pressure exerted on a surface of area A at a depth of h below the surface of a liquid of density ρ is P = 29. This formula should yield the same answer to #9. $P = 1000 t_3 / (9.8 - l_s^2) 3 = 29,400 pa$ 11. A helium balloon floats upward. Show how it "knows" which way to go.  Pashing Pressure  Pashing Pressure  Pressure  And the pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6   | 2 = 10005 0- 29,400N                                                                |
| below the surface of a liquid of density $\rho$ is $P = Agh$ . This formula should yield the same answer to #9. $P = 1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3 = 29,400 \rho a$ 11. A helium balloon floats upward. Show how it "knows" which way to go. $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = 1000 \frac{$                                                                                                                  |     | 1m2 - 29,400pa                                                                      |
| below the surface of a liquid of density $\rho$ is $P = Agh$ . This formula should yield the same answer to #9. $P = 1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3 = 29,400 \rho a$ 11. A helium balloon floats upward. Show how it "knows" which way to go. $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5^2} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = \frac{1000 \frac{1}{5} \left( \frac{9}{10} - \frac{1}{5} \right) 3}{1000 \rho a} = 29,400 \rho a$ $P = 1000 \frac{$                                                                                                                  | 10  | More generally, the pressure exerted on a surface of area A at a depth of h         |
| 11. A helium balloon floats upward. Show how it "knows" which way to go.  Pushing Pressure  Pushing Pressure  Pressure  Pressure  Pressure  At lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | below the surface of a liquid of density p is P - This formula should               |
| A helium balloon floats upward. Show how it "knows" which way to go.  Poshing pressure  Poshing pressure  Pressure  Pressure  And the pressure  Pressure  And the pressure  An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                     |
| Pour Pressure  Pour hisher Elevation 7 the pressure  Up pressure  up at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | P= 1000tg/ of 9,8-/52) 3m = 29,400 pa                                               |
| Pour Pressure  Pour hisher Elevation 7 the pressure  Up pressure  up at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                     |
| Pour Pressure  Pour hisher Elevation 7 the pressure  Up pressure  up at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                     |
| Pour Pressure  Pour hisher Elevation 7 the pressure  Up pressure  up at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | NA Z                                                                                |
| Posting pressure  Pushing pressure  Up pressure  at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11. | Hehm                                                                                |
| Pushing pressure up attower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 05055418                                                                            |
| Pushing pressure up attower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Pushing at last fort                                                                |
| arlower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 13 mer de la                                    |
| arlower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                                     |
| arlower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Pushing mire                                                                        |
| al tout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Up pressure                                                                         |
| Clavaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | elevation                                                                           |



The first picture below shows a beaker containing only water. The other three pictures show what would happen if three different solid objects were added to the first beaker. From the pictures, how much can you discern about each solid object's mass, volume, and density?

