Energy and Power Packet

Problems: On a separate sheet of paper, show your starting equation(s), show your work and box your answer.

5 points each:

- Starting equation (1 point)
- Work and correct answer (3.5 points)
- Boxed answerw/correct units (0.5 points)

1. (II) A box of mass 5.0 kg is accelerated by a force across a floor at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 7.0 s . Find the net work done on the box.
2. (I) How much work must be done to stop a 1250-kg car traveling at $105 \mathrm{~km} / \mathrm{h}$?
3. (I) A spring has a spring stiffness constant, k, of $440 \mathrm{~N} / \mathrm{m}$. How much must this spring be stretched to store 25 J of potential energy?
4. (I) By how much does the gravitational potential energy of a $64-\mathrm{kg}$ pole vaulter change if his center of mass rises about 4.0 m during the jump?
5. (II) A vertical spring (ignore its mass), whose spring stiffness constant is $950 \mathrm{~N} / \mathrm{m}$, is attached to a table and is compressed down 0.150 m . (a) What upward speed can it give to a $0.30-\mathrm{kg}$ ball when released? (b) How high above its original position (spring compressed) will the ball fly?
6. (II) A roller coaster (500 kg) starts from rest at a height of 15 m . Find its total energy, its potential energy, its kinetic energy and its speed at each of the locations indicated.

Position	Height	Potential Energy	Velocity	Kinetic Energy	Total Energy
A	15 m				
B	10 m				
C					
D					

7. (II) Electric energy units are often expressed in the form of "kilowatt-hours." (a) Show that one kilowatt-hour (kWh) is equal to (b) If a typical family of four uses electric energy at an average rate of 520 W , how many kWh would their electric bill be for one month, and (c) how many joules would this be? (d) At a cost of $\$ 0.12$ per kWh , what would their monthly bill be in dollars? Does the monthly bill depend on the rate at which they use the electric energy?
8. (II) A driver notices that her 1150-kg car slows down from $85 \mathrm{~km} / \mathrm{h}$ to $65 \mathrm{~km} / \mathrm{hr}$ in about 6.0 s on the level when it is in neutral. Approximately what power (watts and hp) is needed to keep the car traveling at a constant $75 \mathrm{~km} / \mathrm{hr}$?
9. (II) How much work can a 3.0-hp motor do in 1.0 h ?
10. (II) A shot-putter accelerates a $7.3-\mathrm{kg}$ shot from rest to $14 \mathrm{~m} / \mathrm{s}$. If this motion takes 1.5 s , what average power was developed?
11. (II) A pump is to lift 18.0 kg of water per minute through a height of 3.60 m . What output rating (watts) should the pump motor have?
