\qquad

- Match these to the numbered scenarios from the energy video activity -- hopefully they match up! :-)
- Solve

1. A 0.1 kg ball is thrown upward. At a height of 1 m , the ball has a velocity of $8 \mathrm{~m} / \mathrm{s}$. The ball is caught and brought to rest at a height of 2 m . What non-conservative work is done on the ball after it passes the 1 m mark?
2. A physics student creates a string of rubber bands with $k=5 \mathrm{~N} / \mathrm{m}$. She then ties one end of the string to a 500 g mass and the other end to the floor. She raises the mass until it is just about to stretch the spring (at a height of 1.2 m) and holds it momentarily motionless. Then she throws the mass directly upward. At the moment before the mass hits the 2.7 m tall ceiling, its velocity is $4 \mathrm{~m} / \mathrm{s}$. If, during the throw, her hand pushed the mass over a distance of 0.3 m , what average force did she apply?
3. A physics teacher pushes a 1 N banana up a ramp. The banana starts at rest and ends at rest. The ramp is 0.1 m tall, but it is 0.5 m long. Assuming zero friction, how much average force does the teacher exert on the banana?
4. The same launcher is used to shoot a 0.03 kg cube up an inclined ramp, and this time the spring is compressed a distance of 0.4 m . The cube slides up the ramp and comes to a stop, due to friction. At some point in its slide, the cube has traveled a linear distance of 5 m and a vertical distance of 0.3 m , and its speed has dropped to $1 \mathrm{~m} / \mathrm{s}$. What average force of friction has the spring experienced up to this point?
5. A 0.03 kg sphere is launched horizontally from a spring-loaded projectile launcher. To load the launcher, a student compresses the spring a distance of 0.25 m . When the sphere is launched, it reaches a maximum speed of $10 \mathrm{~m} / \mathrm{s}$. What is the k of the launcher spring?
