	Physics 200 Name:		Key			
	Notes - 10.3 Dynamics of Rotational Motion: Rot	ation	nal Inertia	n Pe	mansla	6
0	1. A door opens more slowly if you push it closer to it more slowly if it is more massive. From a torque and the greater the applied force and the pivot point (the rotational axis), the greater the anguacceleration is inversely proportional to manalogous to the familiar relationships of force, mass	angu Hac ular uss.	ular acceler it is acceleration These relat	door wi ation s applie n. The ionship	II also oper tandpoint, ed from the angular	the
	2. Starting with Newton's 2 nd Law, derive an expression for torque t in terms of mass m, lever arm r and angular acceleration α (and introduce I - "Rotational Inertia" or "moment of inertia")	,	-=F- -=================================	m a		
	I=mr ²		= Fr = m = m = m = m = m = m = m = m = m =			
0	3. Compare Newton's second law for linear motion and Final Final	nd ro	tational mo	tion.		
	F=ma FC>T 7=IX MC>I		Ohject	Location of axis		Moment of nertia
	4. The two definitions of torque:	(a)	Thin hoop, radius R	Through center		MR ²
-	7=F 7=Ix	(b)	Thin hoop, radius R width W	Through central diameter	Axis	$\frac{1}{2}MR^2 + \frac{1}{12}MV$
	5. Rotational Inertia (I) of Various Objects A. A single point mass:	(c)	Solid cylinder, radius R	Through center	Axis	$\frac{1}{2}MR^2$
	I=mr2	(d)	Hollow cylinder, inner radius R ₁ outer radius R ₂	Through center	R ₂	$\frac{1}{2}M(R_1^2 + R_2^2)$
	B. Multiple point masses:	(e)	Uniform sphere, radius R	Through center	Axis	² / ₅ MR ²
. 60	$I = \sum_{i=1}^{n} m_i r_i^2$	(1)	Long uniform rod, length L	Through center	Axis	$\frac{1}{12}ML^2$
9	中卫	(g)	Long uniform rod, length L	Through end	Axis	$\frac{1}{3}ML^2$
	C. Other shapes - see chart	(h)	Rectangular thin plate, length L, width W	Through	Axis	$\frac{1}{12}M(L^2+W^2)$
			Copyright ©	2005 Pea	rson Prentice Hall	, Inc.

$$KE_{T} = \frac{1}{2}mv^{2}$$

$$I = mr^{2} \Rightarrow m = \frac{I}{r^{2}}$$

$$V = \omega r$$

$$KE = \frac{1}{2} \left(\frac{I}{r^{2}} \right) \left(\frac{wr}{r} \right)^{2}$$

$$KE = \frac{1}{2} \left(\frac{I}{r^{2}} \right) \left(\frac{wr}{r} \right)^{2}$$

mgh =
$$\frac{1}{2}mv^2 + \frac{1}{2}Iw^2 = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{1}{2}mv^2)(\frac{1}{2})^2$$

 $\frac{1}{2}mgh = \frac{1}{2}mv^2 + \frac{1}{4}mv^2 = \frac{3}{4}v^2$
 $\frac{1}{3}gh = v^2 = v^2 = \frac{1}{2}\frac{1}{2}\frac{1}{2} - \frac{1}{2}\frac{1$

5. Compare the speeds of thin hoops and solid cylinders, in general, after rolling down ramps (assuming the objects' radii and the ramp heights are identical, and that there is no friction).

$$\frac{V_{cyl}}{V_{Hoop}} = \sqrt{\frac{4}{3}}$$

$$\frac{V_{cyl}}{V_{Hoop}} = \sqrt{\frac{4}{3}}$$

$$V_{cyl} = \sqrt{\frac{4}{3}}$$

$$V_{cyl} = \sqrt{\frac{4}{3}}$$