Name: Kely	1076
------------	------

Practice - 25.6 Image Formation by Lenses - Part 2

1. How far from the lens must the film in a camera be, if the lens has a 35.0 mm focal length and is being used to photograph a flower 75.0 cm away?

$$\frac{1}{di} + \frac{1}{do} = \frac{1}{f} = \frac{1}{36.7 \text{mm}} = \frac{1}{36.7 \text{mm}}$$

- 2. A certain slide projector has a 100 mm focal length lens.

A. How far away is the screen, if a slide is placed 103 mm from the lens and produces a sharp image?

$$\frac{1}{di} + \frac{1}{do} = \frac{1}{f} =$$

B. If the slide is 24.0 by 36.0 mm, what are the dimensions of the image?

$$m = -\frac{di}{do} = -\frac{3.43}{0.103} = 33.3$$

 $24.0 \text{ mm} (33.3) \times 36.0 \text{ mm} (33.3) = 800 \text{ mm} \times 1200 \text{ mm}$
 $= 0.800 \text{ m} \times 1.20 \text{ m}$

- 3. A magnifying glass produces a magnification of 3.00 when held 5.00 cm from an object, such as a rare coin.
- A. What is the focal length of the magnifying glass? $m = \frac{di}{di} = 3 \Rightarrow di = 3 do \Rightarrow di = 3 (5.00 cm) = 15.0 cm$ $\frac{1}{di} = \frac{1}{do} = \frac{1}{f} \Rightarrow f = (\frac{1}{di} + \frac{1}{do}) = (\frac{1}{15.0 cm} + \frac{1}{5.00 cm}) = [7.50 cm]$

B. Calculate the power of the magnifier in diopters.

$$P = \frac{13.30}{7.50 \times 10^{2}}$$

4. Suppose your 50.0 mm focal length camera lens is 51.0 mm away from the film in the camera.

A. How far away is an object that is in focus? $\frac{1}{di} + \frac{1}{do} = \frac{1}{f} \Rightarrow \frac{1}{do} = \left(\frac{1}{f} - \frac{1}{di}\right) = \left(\frac{1}{50.0 \text{ mm}} - \frac{1}{51.0 \text{ mm}}\right) = \frac{2.55 \times 10^{3} \text{ mm}}{2.55 \text{ m}}$

B. What is the height of the object if its image is 2.00 cm high?

$$\frac{bi}{bo} = \frac{-di}{do} = \frac{-dobi}{di} = -\frac{(2.55m)(-2.00x10m)}{51.0x10^3m}$$

$$= 1.00m$$