Name: Physics 200 (Stapleton) Newton's Laws in 1 Dimension Notes: 1st and 2nd Laws Net force (Fnet) Vector sum of all of the E forces acting on an object What is the net force that is acting on the box to the right? +2N = 2Nrightward Outward force exerted by a surface, perpendicular Normal Force: to that surface lottore porter Newton's 1st Law: Usual version: Objects in motion remain in motion in a straight line and at a constant speed, and objects at rest stay at rest, unless they are acted upon by an outside (or unbalanced) force. Simpler version: Objects have zero acceleration unless there is a <u>net</u> force.

There is a <u>net</u> force.

What are the entione?

What are the entione? doing? What are the options? Sitting still - Moving with constant Velocity What are the options for what an object might be doing if there is a net force acting on an object? - slowing down - changing direction -speeding up Newton's 1st Law is called the "Law of Inertia." Inertia is: Resistance to What kinds of objects have the most inertia? Massive objects The basic metric unit of force is the Newton. 1 $N \approx 0.224$ pounds.

/ acceleration
Newton's 2nd Law: Newton's 2nd Law: Net = ma
Mass: A measure
of an object's inertia
The unit we will use for Mass = $\frac{k!}{0.9 \text{ ra}}$, which is abbreviated $\frac{k!}{0.9 \text{ ra}}$
On Earth, a 1kg mass weighs about 9.8 Newtons or about 2.2 pounds.
Weight: Force of gravity accel. SF=ma => W=mg due h Calculating forces using Newton's 2nd law: weight
ZF=ma => W=mg., grav.
Calculating forces using Newton's 2nd law:
1. A 2kg mass accelerates at a rate of 3m/s ² . What net force caused this acceleration?
Fret = ma
Fret = 2kg (3-/50) = 6N)
2. A 91N net force is applied to an object. If the object accelerates at a rate of 8m/s² what is the object's mass?
9/N= m (8-154)
9/N= m (8-1/52) n= 11.4/5
A bowling ball is sitting motionless on the ground. The ground is applying a 49N upward force to the bowling ball. What is the bowling ball's mass?
. —
F=ma=0 Normal Force
5F=0
49N=W
W=mg
$W = mg$ $49N = m 9.8m/s^{2}$ $(m = 5kg)$
$(m \equiv 5kg)$