Physics 200 Chapter 20-21 4-Minute Drill

Current in terms of charge and time

Current in terms of Ohm's Law
$$\int -\frac{V}{R}$$

Potential Difference in terms of Ohm's Law

Equivalent resistance for three equal resistors in series $R_0 = R_1 + R_2 + R_3$

Equivalent resistance for three equal resistors in parallel
$$\frac{1}{Reg} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Relationship between resistance and resistivity R = R

3 versions of power $P = IV = \frac{1}{100} = I^2 R$

Relationship between total current and current through each of 3 resistors in series

Relationship between total current and current through each of 3 resistors in parallel

Relationship between power supply voltage and the potential drop across each of 3 resistors in series

Relationship between power supply voltage and the potential drop across each of 3 resistors in parallel

Physics 200 Chapter 20-21 4-Minute Drill Take Two

Equivalent resistance for three equal resistors in parallel $\frac{1}{Rea} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{1}{R}$

Relationship between power supply voltage and the potential drop across each of 3 resistors in parallel

Potential Difference in terms of Ohm's Law $\sqrt{=}$ TR

Equivalent resistance for three equal resistors in series

Relationship between power supply voltage and the potential drop across each of 3 resistors in VPower = V, + V2 + V3 Supply

Relationship between resistance and resistivity
$$R = \frac{1}{100}$$

Current in terms of charge and time $T = \frac{1}{2}$

3 versions of power
$$P = IV = \frac{V^2}{R} = I^2R$$

Relationship between total current and current through each of 3 resistors in series

Current in terms of Ohm's Law $= \frac{\sqrt{R}}{R}$

Relationship between total current and current through each of 3 resistors in parallel