\qquad

Directions: For each of the problems below, use your trajectory spreadsheet to determine the best launch angle and initial velocity for your projectile. Enter those values below. Then use your graph of launcher settings vs. initial velocity to determine your launcher setting for each shot. In tomorrow's contest, you will get two shots at each target, and only your best shot for each target will count. Your contest score will be based on your average percent error (relative to the horizontal target distance). Shots that hit obstacles will be given a score based on the obstacle's distance from the target.

Your grade for this project will be determined by: 1) the correctness of your solutions to the problems below, 2) your submission of a reasonable graph of initial velocity vs. launcher setting (attach your graph to this sheet), and 3) your participation in the contest. *You may receive extra points for winning the contest, but poor performance will not lower your grade.

Problems:

*Obstacle positions are described in terms of their horizontal distance from the launch point and their vertical distance above the floor.

1. Release height $=01.63 \mathrm{~m} \quad$ Target Distance $=5 \mathrm{~m} \quad$ Target Height $=0.025 \mathrm{~m}$

Obstacle 1 Position: 2 m from the launch point, $1.18 \mathrm{~m}-2 \mathrm{~m}$ from the floor
Ceiling Height $=2.57 \mathrm{~m}$
\qquad
\qquad Launcher Setting = \qquad
2. Release height $=0.55 \mathrm{~m} \quad$ Target Distance $=1 \mathrm{~m} \quad$ Target Height $=0.025 \mathrm{~m}$

Obstacle 1 Position: 0.4 m from the launch point, 1.5-1.8m from the floor
Obstacle 2 Position: 0.65 m from the launch point, $0-0.86 \mathrm{~m}$ from the floor
Ceiling Height $=2.57 \mathrm{~m}$

$$
\Theta=\ldots \quad \mathrm{V}_{0}=\ldots \quad \text { Launcher Setting }=
$$

3. Release height $=0.55 \mathrm{~m} \quad$ Target Distance $=8 \mathrm{~m} \quad$ Target Height $=0.025 \mathrm{~m}$

Obstacle 1 Position: 2 m from the launch point, 0-0.86m from the floor
Obstacle 2 Position: 4 m from the launch point, $1.38 \mathrm{~m}-2.2 \mathrm{~m}$ from the floor
Ceiling Height $=2.57 \mathrm{~m}$
$\Theta=$ \qquad
$\mathrm{V}_{0}=$ \qquad
Launcher Setting = \qquad

