Physics 200 (Stapleton)
1-D Kinematics Notes, Part 1
Kinematics: The study of motion without considering its causes.

Scalar: A quantity with magnitude but no direction.

Vector: A quantity with magnitude and direction.
Numerically, may be positive or negative, depending on the chosen reference frame. Usually, signs follow the same conventions as an x / y grid... upward = positive, downward $=$ negative, rightward $=$ positive, leftward $=$ negative.
$\Delta=$ Delta $=$ "change in". If x changes from 3 m to 1 m , then $\Delta x=-2 m$.

$$
x=x_{0}+\bar{v} t
$$

Preview of $\bar{v}=\frac{v_{0}+v}{2}$
Kinematics
Formulas $\quad v=v_{0}+a t$
to Come

$$
\begin{aligned}
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

	Symbol	Meaning (what it's supposed to mean)	Vector or Scalar?	Common Units	How to estimate or convert
Position	$\begin{array}{\|l\|} \hline x \text { (or } y, \\ \text { depending on } \\ \text { axis of motion) } \end{array}$	Current distance (in a positive or negative direction) from some chosen point of origin.	3	Meters (m)	1 long step $0.305 \mathrm{~m} \approx 1 \text { foot }$
Displacement (often called "distance.")	$\begin{aligned} & \Delta \mathrm{x}(\text { or } \Delta \mathrm{y}) \\ & \text { Sometimes }=d \end{aligned}$	Final position minus original position(e.g. x x_{0}); "Change in position"	1	Meters (m)	1 long step $0.305 \mathrm{~m} \approx 1$ foot
Distance	d	How far something has traveled from its original position, disregarding direction. Distance is not negative.	S	Meters (m)	1 long step $0.305 \mathrm{~m} \approx 1 \mathrm{foot}$
Distance traveled	d	Sum of all of the distances traveled on a trip. Distance traveled is what is recorded by a car's odometer.	S	Meters (m)	1 long step $0.305 \mathrm{~m} \approx 1$ foot
Time	t ${ }^{\text {a }}$ (even though	?	S	Seconds (s)	1s = "one mississippi"
Speed	```v (even though v}\mathrm{ is technically velocity)```	How fast something is moving. A ratio of distance traveled to travel time.	S	Meters per second (m / s)	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \approx \\ & 2.234 \mathrm{mph} \approx 1 \\ & \text { long step per } \\ & \text { second } \\ & \hline \end{aligned}$
Velocity	v	Speed and direction. Speed that may be positive or negative.	V	Meters per second (m / s)	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \approx \\ & 2.234 \mathrm{mph} \\ & 4.5 \mathrm{~m} / \mathrm{s}= \\ & 6 \mathrm{~min} / \text { mile pace } \\ & \hline \end{aligned}$

Practice: At $t=5 \mathrm{~s}$, an object leaves position x_{0} and travels to position x.

$\mathrm{t}=7 \mathrm{~s}$
$t_{0}=5 \mathrm{~s}$
Position: $x_{0}=6 m \quad x=-2 m$
Displacement: $x-x_{0}=-2 m-6 m=-8 m=\Delta x$
Final Distance From Origin: $2 m$
Distance Traveled:
Average Velocity:

Average Speed: $\overline{\text { speed }}=|\bar{V}|=|-4 \mathrm{~m} \dot{\mid}|=4 \mathrm{~m}$
Average Velocity (symbol $=\quad$): when we measure velocity, average velocity is what we will actually measure. This is the average speed of an object as it travels through a given distance. The object may speed up or slow down over that distance, but the average velocity that we calculate will not show this.

Instantaneous Velocity: the velocity of an object at a single point in time

$$
\begin{aligned}
& \text { "Initial velocity" symbol }=V_{0} \\
& \text { Final velocity symbol }=V
\end{aligned}
$$

If I have a velocity of $3 \mathrm{~m} / \mathrm{s}$, what does that mean?

$$
\begin{aligned}
& \text { ave a velocity of } 3 \text { mss, what does that mean? } \\
& \text { I trave a distance of } 3 \mathrm{~m} \text { (in a positive } \\
& \text { direction) each second. }
\end{aligned}
$$

Explain how to walk with a velocity of $1 \mathrm{~m} / \mathrm{s}$.

Average Velocity Formula (Hint: the units provide the formula)

Velocity Practice: The graph on the right shows the movement of an object in front of a motion sensor. Determine the velocity of the moving object for lettered each segment, and use your calculations to fill out a velocity vs. time graph for the object (bottom of page).

1. Fill in the correct information for segment \mathbf{A}, in the graph on the right.

Displacement $=$ \qquad
$\Delta t=45$
$\bar{V} \mathbf{v a v e r a g e}=$ $2 \mathrm{~m} / \mathrm{s}$

Distance traveled $=$ \qquad
Position at end of segment $=$ \qquad Distance (meters)

$\Delta t=25$
$\mathbf{v}_{\text {average }}=-4 \mathrm{~m} / \mathrm{s}$

Distance traveled $=8 \mathrm{~m}$
Position at end of segment $=$ \qquad
3. Fill in the correct information for the entire trip (segments A-D).

Displacement $=4 \mathrm{~m}$
$\Delta t=10 \mathrm{~S}$
$v_{\text {average }}=0.4 \mathrm{~m} / \mathrm{s}\left(\frac{4 m}{10 \mathrm{~s}}\right)$
Distance traveled $=$ \qquad C
Position at end of segment $=4 \mathrm{~m}$
4. Use the distance vs. time graph above to fill in the velocity vs. time graph on the right.

5. Fill in the correct information for segment \mathbf{A}, in the graph on the right.
Displacement $=4 m \quad(6 m-2 m)$
$\Delta t=2 s$
$v_{\text {average }}=2 \mathrm{~m} / \mathrm{s}\left(\frac{4 s}{2 s}\right)$
Distance traveled $=4 \mathrm{~m}$
Position at end of segment $=$ \qquad

6. Fill in the correct information for segment \mathbf{D}.

Distance traveled $=2 \mathrm{~m}$
Position at end of segment $=$ \qquad
7. Fill in the correct information for the entire trip (segments A-D).

Displacement $=-2 m(O-2)$
$\Delta t=\frac{10 s}{}$
$v_{\text {average }}=-0,2 \mathrm{~m} / \mathrm{s}\left(\frac{-2 \mathrm{~m}}{10 \mathrm{~s}}\right)$
Distance traveled $=14 \mathrm{~m} \quad(4+2+6+2)$
Position at end of segment $=0 \mathrm{~m}$
8. Use the distance vs. time graph above to fill in the velocity vs. time graph on the right.

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

Motion Matching Activity Questions:
On a motion sensor graph of position vs. time...

1. What does a positive (upward) slope tell you about the object's motion?
I. Motion is away from the sensur
2. What does a negative slope indicate?
Motion toward the sensor
3. What does the steepness of a slope tell you about the object's motion?

$$
\text { Speed (stepper }=\text { taster) }
$$

4. What does a constant (straight line) slope indicate?
Constant speed (no acceleration)
5. What might a smoothly curving line indicate?

Acceleration (either positive or negative)
6. Sketch a negative slope that is becoming less steep. What does this curve indicate about the motion of an object?

7. Sketch a negative slope that is getting steeper What does this curve indicate about the motion of an object?

Moving toward the sensor, accelerating
8. Sketch a positive slope that is becoming less steep. What does this curve indicate about the motion of an object?

Moving awry,
decelemain,
9. Sketch a positive slope that is getting steeper What does this curve indicate about the motion of an object?
Moving away, acceleration g

Physics 200

Notes: Acceleration
\qquad tells you how something's position changes during one second.
Acceleration tells you how:
Is acceleration vector or scalar quantity?

Acceleration can happen in two fundamentally different ways:

1) Changing

2) Changing

Negative acceleration is also called

The Analogous Relationship between Velocity and Acceleration:
If Pam has a velocity of $+6 \mathrm{~m} / \mathrm{s}$, that means she travels 6 m for every second that ticks by. Another way to say this is that, for each passing second, Pam adds $\mathbf{6 m}$ to her position.
Analogously, if Pam's acceleration is $+6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, this means... with each passing
Second, $6 \mathrm{~m} / \mathrm{s}$ is added to her velocity.
Velocity adds meters each second.
Acceleration adds meters per second each second.
Velocity is the slope of a position vs time graph.
velocity is the slope of a velocity vs time graph.

The acceleration formula:
Velocity describes a change in position over a time interval. Acceleration describes a change in velocity

$$
a_{\text {average }}=\bar{a}=\frac{\Delta v^{c}}{\Delta t} \leftarrow_{s}^{m / s}
$$

Acceleration Formula Practice Problems:

1. Suppose your velocity i $52 \mathrm{~m} / \mathrm{s}$. One second later, your velocity is $6 \mathrm{~m} / \mathrm{s}$. What is your average acceleration over this time period?

$$
\bar{a}=\frac{\Delta V}{\Delta t}=\frac{4 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~s}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

2. When your watch reads 8:01:32 AM, your velocity i $\$ 6 \mathrm{~m} / \mathrm{s}$. At 8:01:40 AM (on the same day), your velocity is $2 \mathrm{~m} / \mathrm{s}$. What is your average acceleration over this time period?

$$
\bar{a}=\frac{\Delta V}{\Delta t}=\frac{-4 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~s}}=-0.5 \mathrm{~m} / \mathrm{s}^{2}
$$

Each row of graphs below comprises a position vs. time graph, a velocity vs. time graph, and an acceleration vs. time graph. Every graph in a row conveys the same motion. For each row, use the one completed graph to fill in the incomplete graphs with reasonable curves. Some rows will have a wider variety of possible answers. Assume that all acceleration is constant.

Essex High School Physics 200
Graph Comparisons
Graph Analysis (20 pts)
Using the information provided in one graph, complete the other 2.

$$
\begin{aligned}
& \text { WH } \\
& \angle H H \\
& Z H H \\
& \angle H: H
\end{aligned}
$$

Notes: Kinematics Formulas
Deriving some formulas:
Starting with a velocity of $6 \mathrm{~m} / \mathrm{s}$ at a position of 30 m , the car below accelerates at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ over a time of 4 seconds. Fill in the following information about this event,

In order to fill out the information above, we should have just derived (or realized) three new kinematics formulas - a new formula for average velocity, and formulas for final velocity an acceleration. Show their derivations here, in general terms.

$$
\begin{aligned}
& \vec{V}=\frac{V_{0} \pm V}{2} \text { Aremge velocity } B \text { the average of the } \\
& \text { initial (大tian velocities (It's mash in } \\
& \text { the middle) } \\
& \begin{array}{l}
\text { Firstweffind:, } V=V_{0}+a t \\
\text { the fimalv }
\end{array} \\
& \text { Then we used that }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}=\frac{v_{0}+\left(v_{0}+\alpha t\right)}{2}
\end{aligned}
$$

Then we used avernus \bar{V} and time toget displacement.

$$
\Delta x=V_{0} t+1 / a t^{2} \Leftarrow \frac{\Delta x}{\Delta t}=V_{0}+a t
$$

$$
\begin{aligned}
& \text { displacement. } \\
& \bar{V}=\Delta x \\
& \Delta t \\
& V t \\
& =\frac{2 v_{0}+a t}{2}
\end{aligned}
$$

Here are all of the basic kinematics formulas that you will need for this unit. The last one $\left(v^{2}=\right.$ $v_{0}{ }^{2}+2 a \Delta x$), is a time-saving formula that is derived based the other basic formulas. We can derive it later.

$$
\begin{aligned}
& \bar{V}=\frac{V+V_{0}}{2} \quad \bar{V}=\frac{\Delta x}{\Delta t} \quad V=V_{0}+a t \\
& a=\frac{\Delta V}{\Delta t} \quad \Delta x=V_{0} t+1 / 2 a t^{2} \quad V^{2}=V_{0}^{2}+2 a \Delta x
\end{aligned}
$$

By convention, rightward and upward directions are pos five_ and
leftward and downward directions are negative.
Practice With Motion Equations:
The G.U.E.S.S. method...

- Steps: Identify what is Given. Identify the Unknown(s). Find an *Equation that incorporates the givens and the unknown. **Substitute givens into the equation. Solve.
- *Sometimes you will need more than one equation
- **It will sometimes save time and confusion if you solve for the unknown algebraically before substituting givens into the equation.
- On tricky problems, a lot of students find it helpful to list all of the possible variables first, and then use the equations to fill in the blanks until you've found the unknown you're looking for.

Example 1. A quadcopter ascends a distance or 30 m while undergoing constant acceleration. If its starting velocity was $5 \mathrm{~m} / 5$, and this ascent lasts 2 seconds, what is the acceleration of the quadcopter?

$$
\begin{aligned}
& V_{0}=5 \mathrm{~m} / \mathrm{s} \\
& V=25 \mathrm{~m} / \mathrm{s} \\
& \Delta v=20 \mathrm{~m} / \mathrm{s} \\
& \bar{v}=15 \mathrm{~m} / \mathrm{s} \\
& a=? 10 \mathrm{~m} / \mathrm{s}^{2} \\
& \Delta x=30 \mathrm{~m} \\
& \Delta t=2 \mathrm{~s}
\end{aligned}
$$

Example 2. A nut is falling at a rate of $-5 \mathrm{~m} / \mathrm{s}^{8}$. If gravity accelerates the nut at a rate of $4.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{for}$ additional seconds, what will be the velocity f the nut after those 6 seconds?

$$
\begin{array}{rlrl}
V=V+a t \ll \sigma_{s} & V=? \\
\eta_{0} \uparrow & V=-5 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~s}) \\
& V=8 \mathrm{~m} / \mathrm{s}= & V=-63.8 \mathrm{~m} / \mathrm{s}
\end{array}
$$

1. A grouse takes off from the yard line of a football field and travels to the 40 yard line over a time op 8 seconds. What is its average velocity? $\bar{V}=$?

$$
\Delta i^{t} \bar{V}=\frac{\Delta x}{\Delta t}=\frac{x-x_{0}}{\Delta t}=\frac{40 y-8 . y}{8 \dot{s}}=\frac{32 y \text { ard }}{8 s}=4 \frac{4 \text { and }}{5}
$$

2. A car accelerates from 30 mph o 50 mph over a time of seconds. What is the car's average velocity during this time period? (Assume constant acceleration) Not necessary

$$
\begin{aligned}
& \bar{K}=\frac{V_{0}+1}{2}=\frac{30 \mathrm{~m} h+50 \mathrm{igh}}{2}=\frac{80-\mathrm{ph}}{2}=40-00 h \\
& V_{0}=0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. You drop a rock off of a very high bridge. Starting from rest the rock accelerates at a rate of -$-9.8 \mathrm{~m} / \mathrm{s}^{2}$ You see a splash 8 secondspafter you release the rock. What is the rock's (velocity when it his the water?

\qquad $v_{0}:-\frac{t}{t}$

$$
\begin{aligned}
& V=V_{0}+a t \\
& V=0 \mathrm{~m} / \mathrm{s}+8 . \mathrm{s}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=-78.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. Starting from rest. ar accelerates $127 \mathrm{~m} / \mathrm{s}^{2}$: 10 seconds What is the car's displacement during

$$
\begin{aligned}
& \Delta x=v_{0} t+1 / 2 a t^{2} \\
& =0 t+1 / 2\left(7 \mathrm{~m} / \mathrm{s}^{2}\right)(10 \mathrm{~s})^{2}=350 \mathrm{~m}
\end{aligned}
$$

5. A runner's velocity a $12: 34: 33$ PM $4 \mathrm{~mm} / \mathrm{s}$. V_{0}

What is the runner's velocity i. $2 \mathrm{~m} / \mathrm{s}$.) What is the runner's average aceeleratumbover this time period?

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v-v_{0}}{t-t_{0}}=\frac{-2 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=-a=?
$$

<o
6. A child traveling at a rate of $15 \mathrm{~m} / \mathrm{s}$ along a zip line. After slowing down at a constant rate over a distance of 40 m the child comes to a stop. - $-V=0$

$$
\begin{aligned}
& \text { a. What is the child's average acceleration over this } 40 \mathrm{~m} \text { ? } \\
& v^{2}=V_{0}^{2}+2 a \Delta x \\
& \theta=225-\frac{2}{s^{2}}+80 m(a) \\
& 0_{i / s}^{2}=(15 \mathrm{~m} / \mathrm{s})^{2}+2 a(40 \mathrm{~m}) \\
& -225-2 / \mathrm{s}^{2}=80 \mathrm{~m}(\mathrm{a}) \\
& \frac{-225 \mathrm{~m}^{2} / \mathrm{s}^{2}}{80 \mathrm{~m}^{2}}=a=-2.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b. How many seconds does it take for the child to travel this 40 m distance? $\Delta t=?$

$$
\begin{aligned}
& V=V_{0}+a t=? \\
& \uparrow=-t=5.34 \mathrm{~s} \\
& 0 \mathrm{n} / \mathrm{s}=15 \mathrm{~m} / \mathrm{s}+\left(-2.81 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}\right) t
\end{aligned}
$$

Δx
7. (*requires multiple formulas) A driver sees a turtle in the road and hits the brakes. It takes him 3) seconds and a distance of 20 m , slow to $a=$?acceleration d wring this three second time period? $\quad \mathrm{m} / \mathrm{s})$

$$
\begin{aligned}
& a=\frac{\Delta V}{\Delta t}=\frac{v-v_{s}}{3_{s}}=\frac{4 \mathrm{~m} / \mathrm{s}-v_{0}}{3 \mathrm{~s}} \Rightarrow a=\frac{4 \mathrm{~m} / \mathrm{s}-9,33 \mathrm{~m}}{3 \mathrm{~s}} \\
& \begin{array}{l}
\bar{v}=\frac{\Delta x}{\Delta t} \operatorname{and} \bar{v}=\frac{v+v_{0}}{2} a=-1,88 \mathrm{~m} / \mathrm{s} \\
\frac{\Delta x}{\Delta t}=\frac{v+v_{0}}{2}
\end{array} \\
& 3 \text { formulas } \\
& \begin{aligned}
30 \frac{\Delta x}{\Delta t} & =\frac{V+r_{0}}{2} \\
\frac{20 \mathrm{~m}}{35} & =\frac{4 \mathrm{~m} / \mathrm{s}+V_{0}}{2}
\end{aligned} \\
& V_{0}=\sigma_{0} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Physics 200
Name:
 1-D Kinematics: Free-fall (mostly), plus Areas Under Curves

Free-fall: The state of being acted upon by only the force of gravity [Note that an upward-moving object may be in free-fall.]
g: the absolute value of free-fall acceleration near the Earth's surface.
Free-fall acceleration: $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ or -g
The diagram below is intended to represent an object that is launched vertically upward in the absence of air resistance (ie. in free-fall). The diagram appears to show the ball moving sideways, but it isn't moving sideways. The apparent sideways motion is unavoidable if we're going to separate upward-moving objects from the downward-moving objects (as we need to do for clarity).

1. Fill in one of the blanks in the diagram with a made-up value. Based on that value, fill in the rest. Estimate by using $g=10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& h=45 \mathrm{~m} \\
& a=-10 \mathrm{x} / \mathrm{s}^{2} \\
& \mathrm{l}=0 \mathrm{~m} / \mathrm{s} \\
& t=3 \mathrm{~s}
\end{aligned}
$$

Free-Fall Hint \#1: Free-falling objects that go up and then come down have symmetric flights. The trip up is the same as the trip down, only backward. It is often easier to analyze the fall rather than the ascent, because we know the initial velocity of the fall is \qquad 0 .

Example 1: A ball is launched directly upward from ground level (in the absence of air resistance). It stays in the air for 10 seconds. What height did it reach at its highest point?
Consider the Fall...

$$
\begin{aligned}
& V_{0}=0 \mathrm{~m} / \mathrm{s} \\
& \Delta t=5 \mathrm{~s} \\
& a=-9.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta x=v_{0} t+1 / 20 . t^{2} \\
& \Delta x=0(5 s)+1 / 2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5 s)^{2} \\
& \Delta x=-122.5 \mathrm{~m}
\end{aligned}
$$

$$
\text { Fell } \overrightarrow{122.5 m} \text { so max }
$$

Helpful Hint \#2:
Draw a diagram.
Helpful Hint \#3: If you're having trouble getting started, list all of the usual variables and fill in the ones you know.

Example 2: A ball is released, from rest, above a couch. After free-falling for 4 seconds, the ball contacts the couch cushion and then travels another 0.2 m downward before coming to a stop. What is the ball's acceleration while it was being stopped by the couch cushion?

Areas "Under" curves:

1. What kinematic information can we get by calculating the area "under" the curve of a velocity vs. time graph?
*Displacement *
2. Why did I put quotation marks around "under?"

When the curve is below the x axis,
 we find the area above it and unakio a(m/r) it negative.
3. What does the area under the curve of an acceleration vs. time graph tell us?

$$
\text { area }=a(\Delta t)=\Delta V<\text { Changein } \quad \text { Velocity }
$$

4. Suppose we graph the acceleration of a sticky Nerf dart that is shot across the room, sticking to the opposite wall. How can \#2, above, help us draw that graph more correctly? Try it, and we will see.

 and ends motionless

$$
\left(V_{0}=V=0 \mathrm{~m} / \mathrm{s}\right)
$$

So, overall $\Delta V=0$,
So the total area "under" The curve is zero..
S.1 the positive and negative

NAME:

Chapter 1 \& 2 Test 2015-2016

I. MULTIPLE CHOICE: Select the one best answer for each question. Where g is used, assume it equals $10 \mathrm{~m} / \mathrm{s}^{2}$ and neglect air resistance for falling/moving objects.

1. Which of the following five position versus time graphs represents the motion of an object moving with an increasingly negative velocity?

A

B

C

D
2. The slope of a positiptyersus time graph gives
A) position.
B) velocity.
C) acceleration.
D) displacement.
3. Which one of the following situations is impossible?
A) A body having a positive velocity and a negative acceleration
B) A body having a negative velocity and a negative acceleration
C) A body having zero velocity and positive acceleration
D) A body having constant acceleration and positive velocity
(E) A body having constant velocity and positive acceleration
4. A particlemoves on the x axis. When its velocity is positive and increasing:
(A) ts acceleration must be positive
B) its acceleration must be negative
C) its acceleration must be zero
D) it must be slowing down
E) none of the above must be true
5. The slope of a velocity versus time graph gives
A) position.
B) velocity.
C) gcceleration.
D) displacement.
6. Consider the following five graphs (note the axes carefully!). Which of these represent(s) motion at constant velocity?
A) IV only
B) IV and V only
C) I, II, and III only
D) I and II only
E) F and IV only

II

III
7. A particle moves along the x axis from x_{0} to x. Of the following values of the initial and final coordinates, which results in the displacement with the largest magnitude?
A) $x_{0}=-4 m, x=2 m$
B) $x_{0}=-4 m, x=4 m$
C) $x_{0}=4 m, x=-2 m$
D) $x_{0}=4 \mathrm{~m}, x=6 \mathrm{~m}$
E) $x_{0}=-4 m, x=-8 m$

Questions 8-11

A car starts from Burlington, goes 60 km in a straight line to Montpelier, immediately turns around, and returns to Burlington. The time for this round trip is 2 hours.
8. What is the average speed for this kound trip?
A) 0
B) $30 \mathrm{~km} / \mathrm{hr}$
(C) $60 \mathrm{~km} / \mathrm{hr}$
D) $120 \mathrm{~km} / \mathrm{hr}$
9. What is the average velocity for this round trip?
(A) 0
B) $30 \mathrm{~km} / \mathrm{hr}$
C) $60 \mathrm{~km} / \mathrm{hr}$
D) $120 \mathrm{~km} / \mathrm{hr}$
10. What is the distance traveled on this round trip?
A) 0
B) 30 km
C) 60 km
(D) 120 km
11. What is the displacement for this round trip?
(A) 9
B) 30 km
C) 60 km
D) 120 km
12. A car starts from rest and goes down a slope with a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. After 6 seconds the car reaches the bottom of the hill. 7 Its speed at the bottom of the hill is: $V=V_{0}+$ at $\Rightarrow V=(0)+\left(5 \frac{m}{5 / 2}(65)=30 \frac{m}{3}\right.$
A) $5 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $25 \mathrm{~m} / \mathrm{s}$
(D) $30 \mathrm{~m} / \mathrm{s}$
E) $180 \mathrm{~m} / \mathrm{s}$
13. The graph represents the straight line motion of a car. How far does the car travel between $t=5$ seconds and $t=9$ seconds?
A) 4 m
B) 12 m
C) 44 m
D) 36 m
E) 60 m

14. A ball is tossed straight up. Upward is taken to be the positive direction. The acceleration due to gravity of the ball is:
A) positive during both ascent and descent
B) hegative during both ascent and descent
C) negative during ascent and positive during descent
D) positive during ascent and negative during descent
E) none of the above
15. The area under a curve in gacceleration versus time graph gives
A) change in acceleration
B) change in velocity.
C) displacement.
D) position.
16. A freely falling body has a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. This means that:
A) the speed of the body increases by $10 \mathrm{~m} / \mathrm{s}$ during each second
B) the body falls 10 m during each second
C) the body falls 10 m during the first second
D) the acceleration of the body increases by $10 \mathrm{~m} / \mathrm{s}^{2}$ during each second
E) the acceleration of the body decreases by $10 \mathrm{~m} / \mathrm{s}^{2}$ during each second
17. An object is thrown straight up from ground level with a speed of $50 \mathrm{~m} / \mathrm{s}$. What is its upward speed above ground level 3.0 seconds later? Assume $g=-10 \mathrm{~m} / \mathrm{s}^{2}$.
A) $0 \mathrm{~m} / \mathrm{s}$
B) $50 \mathrm{~m} / \mathrm{s}$
C) $40 \mathrm{~m} / \mathrm{s}$
D) $30 \mathrm{~m} / \mathrm{s}$
E) $20 \mathrm{~m} / \mathrm{s}$
18. A stone is dropped from a cliff. The graph (carefully note the axes) that best represents its speed while it falls is:

A

B

D

E
19. Suppose that an object travels from one point in space to another. Make a comparison between the displacement and the distance traveled. (Note: The path is not necessarily a direct straight-line path.)
A) The displacement is either greater than or equal to the distance traveled.
B) The displacement is always equal to the distance traveled.
C) Jhe displacement is either less than or equal to the distance traveled.
D) The displacement can be either greater than, smaller than, or equal to the distance traveled.
20. The area under a curve in a velocity versus time graph giyes
A) acceleration.
B) velocity.
C) position
D) displacement..
21. Suppose a ball is thrown straight up. Make a statement about the velocity and the acceleration when the ball reaches the highest point.
A) Both its velocity and its acceleration are zero.
B) Its velocity is zero and its acceleration is not zero.
C) Its velocity is not zero and its acceleration is zero.
D) Neither its velocity nor its acceleration is zero.

Chapter 1-2 Test

$$
2015-2016
$$

(1) $95 . \frac{1 \mathrm{hm}}{\mathrm{h}}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{k}}{3600 \mathrm{~s}}\right)=26.4 \frac{\mathrm{~m}}{\mathrm{~s}}$
(2)

$$
\begin{aligned}
V=\frac{\Delta x}{\Delta t}=\frac{2 \pi r}{T} & =\frac{2 \pi\left(2.28 \times 10^{8} \mathrm{~km}\right)}{687 d\left(\frac{24 \mathrm{~h}}{1 d}\right)} \\
& =8.69 \times 10^{4} \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
V=\frac{\Delta X}{\Delta t} \Rightarrow \Delta t & =\frac{\Delta X}{V}=\frac{18.4 \mathrm{~m}}{0.800 \times 3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =7.67 \times 1.0^{-8} \mathrm{~s}
\end{aligned}
$$

(4)

$$
\text { (4) } \begin{aligned}
a=\frac{\Delta V}{\Delta t}=\frac{V-V_{0}}{t} & =\frac{15.0-24.0 \frac{\mathrm{~m}}{\mathrm{~s}}}{3.0 \mathrm{~s}}=-3.00 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
X-x_{0}=V_{0} t+\frac{1}{2} a t^{2} & =(24.0 \mathrm{~m})(3.00 \mathrm{~s})+\frac{1}{2}\left(-3.0 .0 \mathrm{~m} \frac{\mathrm{~s}}{\mathrm{~s}}\right)(3.005)^{2} \\
& =58.5 \mathrm{~m}
\end{aligned}
$$

(5)

$$
\begin{aligned}
V=V_{0}+a t & =12.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(2.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(6.005) \\
& =28.8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

(6) Equation

Table

$$
\begin{aligned}
& V=V_{0}+a t \Rightarrow t=\frac{V-V_{0}}{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } v^{2}=\hat{\psi}_{6 y+2}^{2}+2 \hat{\hat{\alpha}}\left(y-y_{0}\right) \\
& \Rightarrow r=\sqrt{2 g\left(y-y_{0}\right)}=\sqrt{2\left(9,80 \frac{m}{s^{2}}\right)(6,00 m)} \\
&
\end{aligned}
$$

Physics 200
Chapter 2: Extended Kinematics Problems Practice

1. A car accelerates from rest at a constant rate of $-4 \mathrm{~m} / \mathrm{s}^{2}$. After accelerating at this rate for a distance of 500 m , the car turns off its engine and begins to coast. The car coasts for 22 seconds before
Fin finally coming to rest, and during this 22 seconds it slows down at a constant rate.
Fin $V=0 \mathrm{mll}$ finally coming to rest, and during this
Max

$$
x_{0}=05
$$

a. What was the car's maximum speed during this event?

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a \Delta x
\end{aligned}
$$

b. What was the car's velocity when it reached its maximum speed?

$$
-63.2 m / s
$$

c. At what time did the car reach that velocity?

$$
\begin{aligned}
& V=V_{0}+a t^{t} \\
& -63.2 \mathrm{~m} / \mathrm{s}=0+2-6 / \mathrm{m} / \mathrm{s}^{2}(\mathrm{~s}) \\
& t=15.8 \mathrm{~s}
\end{aligned}
$$

d. What was the-car's-acceleration during its coasting period?

$$
\begin{array}{ll}
V=V_{0}+a b & 63.2 \mathrm{~m} / \mathrm{s}=a / 22 \mathrm{~s}=a \\
0 \mathrm{~m} / \mathrm{s}=-63.2 \mathrm{~m} / \mathrm{s}+a(22 \mathrm{~s}) & a=2.87 \mathrm{~m} / \mathrm{s} 2
\end{array}
$$

e. How far did the car travel after its motor turned off?

$$
\begin{aligned}
\Delta x=V_{0} t^{2}+1 / 2 a t^{2} & =-63.2 \mathrm{~m} / \mathrm{s}(22 s)+\frac{1}{2}\left(2187 \mathrm{~m} / \mathrm{s}^{2}\right)(22 s)^{2} \\
\Delta x & =-1390 \mathrm{~m}+695 \mathrm{~m}
\end{aligned}
$$

f. What was the car's total displacement?

2. A plastic action figure is launched vertically upward from a point 10 m above the ground [At $\mathrm{t}=0 \mathrm{~s}$, the height of the action figure is 10 m above the ground]. From $t=0 \mathrm{~s}$ to $\mathrm{t}=6 \mathrm{~s}$, the action figure travels solely under the influence of gravity. Air resistance can be ignored for this time period. At $\mathrm{t}=6 \mathrm{~s}$, the action figure's height is 40 m . Between $t=6 \mathrm{~s}$ and $\mathrm{t}=7 \mathrm{~s}$, a parachute pops out of the figure and deploys, causing the figure's speed to decrease at a constant rate for that 6 s to 7 s time period. At $t=7 \mathrm{~s}$, the figure's speed is $3 \mathrm{~m} / \mathrm{s}$. From $\mathrm{t}=7 \mathrm{~seconds}$ onward, the action figure floats the rest of the way to the Earth (height $=0 \mathrm{~m}$) at a constant speed of $3 \mathrm{~m} / \mathrm{s}$.

a. What was the action figure's initial velocity?

$$
\begin{aligned}
& \Delta x=V_{0} t+1 / 2 a t^{2} \\
& 30 m=V_{0}(6 s)+1 / 2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~s})^{2} \Rightarrow 206 \mathrm{~m}=V_{2}(6) \\
& 30 m=V_{0}(6 s)-176.4 m
\end{aligned}
$$

b. What was the action figure's velocity at $t=6 \mathrm{~s}$?

$$
\begin{aligned}
V=V_{0}+a t & =34.3 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~s}) \\
V & =34.3 \mathrm{~m} / \mathrm{s}-58.8 \mathrm{~m} / \mathrm{s}=-24.5 \mathrm{~m} / 5
\end{aligned}
$$

c. What was the action figure's average acceleration between $t=6 \mathrm{~s}$ and $\mathrm{t}=7 \mathrm{~s}$?

$$
\begin{aligned}
& V=V_{0}+a t \\
& -3 \mathrm{~m} / \mathrm{s}=-24.5 \mathrm{~m} / \mathrm{s}+a(1 / \mathrm{s}) \quad \begin{array}{r}
21.5 y=a(1 \mathrm{~s}) \\
a=21.5 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\end{aligned}
$$

f. How long did the entire trip last?

Final 26.25m traveled @3m/s

$$
\begin{aligned}
& V=\frac{\Delta x}{\Delta t}-3 \mathrm{~m} / \mathrm{s}=\frac{-26.25 m}{\Delta t} \Rightarrow \Delta t=8.75 \mathrm{~s} \\
& { }^{* *} \text { What was the action figure's average speed? } \quad \Rightarrow t / t=75+8.75 \mathrm{~s}=15.75 \mathrm{~s}
\end{aligned}
$$

Ave $=\frac{\text { total Dist. }}{\text { total tine }}$ Need to know max height.

$$
\text { at top initial - } \uparrow
$$

$$
\begin{aligned}
& \text { d. What was the action figure's displacement between } \mathrm{t}=6 \mathrm{~s} \text { and } \mathrm{t}=7 \mathrm{~s} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { e. What was the action figure's elevation at } t=7 \mathrm{~s} \text { ? }
\end{aligned}
$$

Name Key

Ch. 2 Kinematics in 1-D Assessment

Part 1:

1) Describe an example of motion that has negative velocity and positive acceleration.

Formulas and info:
$\Delta x=v_{0} t+\frac{1}{2} a t^{2}$
$v=v_{0}+a t$
$v^{2}=v_{0}^{2}+2 a \Delta x$
1 mile $=5280$ feet
$164=0.305$

2) Describe an example of motion that has zero velocity and negative acceleration.

A motionless object is just beginning
move leftward l
(or downward)
3) Three parts:

i. Which velocity graph shows the same motion depicted in position graph \mathbf{C} ?
ii. Which position graph shows the same motion depicted in acceleration graph \mathbf{I} ?
iii. Which position graph shows the same motion depicted in velocity graph \mathbf{H} ?

4) (2pts) Suppose an object is launched directly upward in the absence of air resistance (i.e. freefall). The object goes up and comes down, remaining in the air for 4 seconds. On the graphs to the right, sketch the object's velocity, and acceleration at each point in the 4 second trip.
Fonimptine

Problems [4 points Each = Useful Equation (1/2 point) + Givens with symbols and units (1/2 point) +
Work - Givens substituted into equations and solved (1/2 point) + Correct units for answer (1/2 point) + Correct answer (1 point).]

1. Video analysis of a car shows that it is able to start from rest and reach a speed of $6.00 \mathrm{~m} / \mathrm{s}$ over a distance of 6 m meters. Calculate the car's acceleration.

$$
\begin{aligned}
& V_{0}=0 \mathrm{~m} / \mathrm{s} \quad V=6.00 \mathrm{~m} / \mathrm{s} \quad \Delta x=6 \mathrm{~m} \\
& V^{2}=V_{0}^{2}+2 a \Delta x \\
& \left(6 \mathrm{~m} / \mathrm{s}^{2}=0+2 a(6 \mathrm{~m})\right. \\
& a=3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$60 \mathrm{~m} / \mathrm{s}$
2. A car is traveling at a constant rate of $26 \mathrm{~m} / \mathrm{s}$. At some point, the car begins to undergo constant acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. If this acceleration lasts for 5 seconds, what distance does the car travel during the acceleration period?

$$
\begin{aligned}
& V_{0}=6 \mathrm{~m} / \mathrm{s} \\
& a=4 \mathrm{~m} / \mathrm{s}^{2} \\
& \Delta t=5 \mathrm{~s}
\end{aligned}
$$

3. A pumpkin is dropped from the top of a tall building. If the pumpkin freefalls to ground level in a time of 2.5 seconds, what is its sere when it hits the ground?

$V_{0}=0 \mathrm{~m} / \mathrm{s}$

$$
\Delta t=2.5 \mathrm{~s}
$$

$$
a=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& V=v_{0}+a t \\
& v=0 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s}) \\
& V=-24.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. In the absence of air resistance (freefall), a soccer ball is kicked straight up in the air and then returns directly to Earth. If the soccer ball makes the round trip in 10 seconds, how high does the ball go?

$$
\begin{aligned}
& \Delta t_{10 L 1}=10_{S} \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Consider the fall...

$$
\begin{aligned}
& \Delta x=V_{0} t+1 / 2 a_{0} t^{2} \\
& \Delta x=0+1 / 2\left(-9.6 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2} \\
& \Delta x=-123 \mathrm{~m})
\end{aligned}
$$

Physics 200
Extended Problem (1 2pts)
Name: \qquad
Chapter 2 Test (2 points each)
A student is stuck on a one-dimensional line in the X dimension. She can move left and right, but not up, down, back, or forth. Starting from rest at point $A(x=0 \mathrm{~m}, t=0 \mathrm{~s})$, she accelerates to the right at a rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ until she reaches point B a time of 6 seconds. At $t=6 \mathrm{~s}$, (as she passes point B) her acceleration instantly changes to $-1.5 \mathrm{~m} / \mathrm{s}^{2}$ (leftward acceleration). She continues traveling with this same $-1.5 \mathrm{~m} / \mathrm{s}^{2}$ acceleration until she reaches point $D 30$ seconds later (at $t=36 \mathrm{~s}$). After leaving point B, and before reaching point D, she reverses direction at point C. At point D she crashes into an immovable wall and stops.

Acceleration between points \mathbf{A} and $\mathrm{B}=$ $2.5 \mathrm{~m} / \mathrm{s}^{2}$
Acceleration between points B and $D=$ $-1.5 \mathrm{~m} / \mathrm{s}^{2}$
(a) What is her velocity at point B ?

$$
\begin{aligned}
V & =V_{0}+a t \\
& =0 \mathrm{~m} 5+2.5 \mathrm{~m} / \mathrm{s}(6 \mathrm{~s})=15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) What is the distance of point B from the origin (Point $A, x=0 \mathrm{~m}$)?

$$
\begin{aligned}
\Delta x & =V_{0} t+1 / 2 a t 2 \\
& =0+1 / 2(2.5 \mathrm{~m} / \mathrm{s})(6 \mathrm{~s})^{2} \\
& =45 \mathrm{~m}
\end{aligned}
$$

(c) How much time-etapses as she travels from point B to point C ?

$$
\begin{array}{ll}
V=15 \mathrm{~m} / \mathrm{s} & V=V_{0}+a t \\
V=0 \mathrm{~m} / \mathrm{s} & 0 \mathrm{~m} / \mathrm{s}=15 \mathrm{~m} / \mathrm{s}+\left(-1.5 \mathrm{~m} / \mathrm{s}^{2}\right) t \\
a=-1.5 \mathrm{~m} / \mathrm{s}^{2} & \Delta t=10 \mathrm{~s}
\end{array}
$$

(d) What is the distance between points B and C ?

$$
\begin{gathered}
\Delta t=10 s^{3} \rightarrow \\
\text { sewer } \\
\text { ste }
\end{gathered}
$$

$$
\Delta x=V_{0} t+1 / 2 a t^{2}
$$

$$
=150 \mathrm{~m}-75 \mathrm{~m}=75 \mathrm{~m}
$$

(e) What is her velocity when she reaches point D (before she stops, while she is still moving)?

Consider C to $D \Rightarrow V_{0}=0 \mathrm{~m} / \mathrm{s} \quad a=-1.5 \mathrm{~m} / \mathrm{s}^{2} \quad t_{0}=16_{s} \quad t=36_{s} \quad \Delta t=20_{\mathrm{s}}$

$$
\begin{aligned}
V=V_{0}+a t \Rightarrow V & =0 \mathrm{~m} / \mathrm{s}+\left(-1.5 \mathrm{~m} / \mathrm{s}^{2}\right)(20 \mathrm{~s}) \\
V & =-30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) What is her total displacement (not distance traveled!) for the entire trip - through all points A-D? }
\end{aligned}
$$

