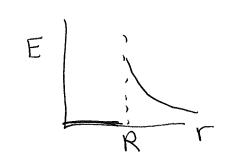
Chapter 18 4-Minute Drill

Coulomb's Law $\frac{KQ_1Q_2}{C2}$
Electric field of a point charge $\frac{kQ}{rQ}$
Force on a charge in an electric field QE
Acceleration of a charge in an electric field $\frac{GE}{M}$
Electric field inside a conductor
Direction of an electric at the surface of a conductor perpendicular
E versus r graph for a charged conducting sphere
Direction of the electric field due to a positive point charge radially outward
Direction of the electric field due to a negative point charge radially inwar
Kinematic equation for the final velocity in terms of acceleration and time $\sqrt{\xi} = \sqrt{0 + \alpha}$

Kinematic equation for final velocity in terms of acceleration and displacement $\sqrt{t^2} = \sqrt{0} + 20$

Chapter 18 4-Minute Drill - Take Two


Direction of the electric field due to a negative point charge	radially	inward
	, 1	ı

Electric field inside a conductor

Acceleration of a charge in an electric field
$$\mathcal{L}$$

E versus r graph for a charged conducting sphere

Electric field of a point charge
$$\frac{\mathbb{KQ}}{\mathbb{C}^2}$$

Direction of the electric field due to a positive point charge radially outward

Direction of an electric at the surface of a conductor perpendicular

Kinematic equation for the final velocity in terms of acceleration and time $\sqrt{f} = \sqrt{o} + \alpha T$

Kinematic equation for final velocity in terms of acceleration and displacement