Physics 100
Unit 4: Energy (Stapleton)

1. What is energy? What are its units?
2. Provide a physics definition (formula) of work? What are the units for work?
3. Give some examples of work.
4. What is kinetic energy? What is its formula? Symbol?
\qquad

$$
\begin{aligned}
& \text { Formulas For This Unit: } \\
& \bar{v}=\frac{\Delta x}{\Delta t} a=\frac{\Delta v}{\Delta t} \quad a=\frac{2 \Delta x}{t^{2}} \quad F_{g}=m g \\
& W=F d \quad P=\frac{w}{t} \quad 1 \mathrm{hP}=746 \mathrm{~W} \\
& K E=1 / 2 m v^{2} \quad P E=m g h \\
& P E_{0}+K E_{0}=P E+K E \\
& P E_{0}+K E_{0}+W_{N C}=P E+K E \\
& P E_{0}+K E_{0}+Q_{0}+W_{N C}=P E+K E+Q \\
& \sum W=\Delta K E \quad \sum W=\sum F(d) \\
& \Delta K E=K E-K E_{0}
\end{aligned}
$$

5. Calculate kinetic energy of a 30 kg student running at a speed of $4 \mathrm{~m} / \mathrm{s}$.
6. What is potential energy? What is its symbol?
7. What is the formula for gravitational potential energy?
8. Calculate the potential energy of a 50 kg student who is standing at the top of a 7 m tall waterside.
9. What is thermal energy? What is its symbol?
10. Use a formula to explain the law of conservation of energy.
11. What is power?

What is its symbol?

What are the units for Power?

What are some other units?
12. What is the formula for power?
13. Calculate the power output of a student who applies a force of 200 N over a distance of 6 m , in a time of 3 seconds?

Convert this to horsepower.
14. Starting from rest, a 70 kg student runs a distance of 20 m in a time of 4 s , finishing at a height 6 m above the starting point, and having a final velocity of $5 \mathrm{~m} / \mathrm{s}$. Calculate the student's average force and average power output. Convert the power output to horsepower.

- Step 1: Find the student's starting and ending KE and PE.

- Step 2: use the law of conservation of energy to find the work that was done by the student.
- Step 3: use the work formula (and the distance) to calculate force.
- Step 4: use the power formula to calculate power in Watts.
- Step 5: convert from Watts to horsepower. Google it if you need to.

15. Starting from rest, a 90 kg student climbs a vertical distance of 10 m in a time of 16 s , ending with a final velocity of $0.7 \mathrm{~m} / \mathrm{s}$. Calculate the student's average force and average power output. Convert the power output to horsepower.

- Step 1: Find the student's starting and ending KE and PE.

- Step 2: use the law of conservation of energy to find the work that was done by the student.
- Step 3: use the work formula (and the distance) to calculate force.
- Step 4: use the power formula to calculate power in Watts.
- Step 5: convert from Watts to horsepower.

