Physics 100 (Stapleton)
Energy Notes Part 2 - and some practice

1. What does "\% efficiency tell us"?

What is the formula for \% efficiency?
2. Suppose you push a box along the floor with a force of 20 N , and you push for a distance of 2 m . If, at the end of your push, the box has 10J of KE, what is the efficiency of this process?
3. Object A has a mass of 400 g , and object B has a mass of 300 g . When they are released from the positions shown on the right, object A falls 0.4 m to the floor, while object B rises the same distance upward away from the floor. This process takes 3 seconds.
a. Convert the objects' masses to kg.
b. Calculate the object's final speeds
[Ave speed $=d / t$. Final speed $=2$ (ave speed).

c. Find the total input energy and total output energy by filling in the table below...

When?	What	KE (J)	PE (J)	Total E (J)
Starting Point	Object A			
	Object B			
			Total Input Energy	
	Object A			
	Object B			
			Total Output Energy	

d. Calculate the \% efficiency for this action.
e. Use the Law of Conservation of Momentum to find the work done by friction.
f. Use the work formula to find the force of friction.

Energy Practice Quiz \#1

1. What is the physics definition of "energy?"

$$
\begin{aligned}
& W=F d \quad P=\frac{W}{t} \quad 1 h p=746 \mathrm{~W} \\
& K E=1 / 2 m v^{2} \quad P E=m g h \\
& P E_{0}+K E_{0}=P E+K E
\end{aligned}
$$

2. What is the physics definition of "work?"
3. Given an example of work. Provide example numbers and calculate the amount of work that is done. Use correct units.
4. Calculate how much power was used to do the work in your example above, assuming that the work took a time of 4 seconds. Use correct units.
5. Explain how kinetic energy and potential energy are different.
6. A 4 kg cart is moving at a speed of $5 \mathrm{~m} / \mathrm{s}$ on a flat surface at a height of 0 m . Without experiencing any outside forces, the car rolls up a ramp to a height of 2 m above the flat surface. This means the car is "coasting" with no friction.
a. Calculate the car's KE on the flat surface.
b. Calculate the car's PE on the flat surface.
c. Calculate the car's PE at the height of 2 m .
d. What is the car's PE at the height of $2 m$?
e. Explain the reasoning behind your answer to part d.
