States of Matter (a.k.a. phases of matter)

Solid phase: Particles are locked in place, touching one another, vibrating. Hotter solids vibrate more violently.

Liquid phase: Particles are touching one another, but sliding and bumping around and changing positions; flowing. Hotter liquid particles slide and bump around faster.

Gas phase: Particles are flying free, but occasionally bumping into one another. Hotter gas particles fly faster.

- 1. Label the liquid water, solid water, and gaseous water (water vapor) in the diagram below.
- 2. Label the arrows with their names (melt, evaporate, condense, freeze).
- 3. Label the arrows with the required change in energy (energy gain, energy loss)

Quick Review:

- 4. What happens to the temperature of a gas when the gas is compressed?
- 5. What happens to the temperature of a gas when the gas is allowed to expand?

Practice: Rising Air, Sinking Air, and Weather

Part 1: Evaporation at the Equator (and other places)

The Sun shines on Earth's surface, causing the Earth's surface to heat up. If there is water on the
Earth's surface, this heat gets transferred to that water and to the air near the ground. This heating causes
the speed of water and air molecules to (increase or decrease). Eventually, the
water molecules have gained enough energy to(evaporate or condense).
Their state of matter turns from (solid, liquid, or gas) to (solid,
liquid, or gas), and they leave their puddles (or their ocean, river, lake, etc.) to become an invisible part of
the warm air near the ocean's surface.
Another effect of this increasing warmth near the ocean's surface is that the volume of the air that
is heating at the Earth's surface begins to(increase or decrease). This change in
volume causes the air's density to(increase or decrease). This density change cause
the air (and the water that is in the air) to (rise or sink).
Part 2: Rising Air
As the rising air gets higher, it encounters (higher or lower) air pressure,
because there is (more or less) air above it. This change in air pressure causes the
volume of the rising air to (expand or compress). This
(expansion or compression) of the air causes the temperature of the air to (increase
or decrease). This new change in the temperature of the air causes the speed of the air molecules to
(increase or decrease). The change in molecular motion causes the water molecules to
change phase (state) again from (solid, liquid, or gas) to (solid,
liquid, or gas). When this happens, tiny droplets of water form around specs of dust, creating clouds. At
first the droplets are too small and light to fall to the ground. They fall so slowly that even gentle updrafts
keep pushing them back up. Eventually, when enough individual droplets come together, they become
big enough to fast enough to make it to the ground as rain.

Part 3: Sinking Air

In other place	s, air sinks. As the sinking air	gets lower, it encounters(higher
or lower) air pressure	, because there is	(more or less) air above it. This change in a	uir
pressure causes the ve	olume of the sinking air to	(expand or compress). This	
	(expansion or compression	n) of the air causes the temperature of the air to	
	(increase or decrease). This no	ew change in the temperature of the air causes the	he
speed of the air mole	cules to(incr	rease or decrease). If there are water molecules	in the
air, this change in mo	elecular speed causes the water	molecules to change phase (state) from	
	(solid, liquid, or gas) to	(solid, liquid, or gas). This is how	W
clouds	(appear or disappear	r).	