Name: \qquad

Practice 17.4 - Doppler Effect

Equations:

$$
v=331.3 \sqrt{1+\frac{T}{273.15}} \approx 331.3+0.606 \mathrm{~T} \mathrm{~m} / \mathrm{s} \quad f_{0}=f_{s} \frac{v \pm v_{0}}{v \pm v_{s}}
$$

1. Suppose a train that has a $150-\mathrm{Hz}$ horn is moving at $35.0 \mathrm{~m} / \mathrm{s}$ in still air on a day when the speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
A. What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it passes?
B. What frequency is observed by the train's engineer traveling on the train?
2. What frequency is received by a mouse just before being dispatched by a hawk flying at it at $25.0 \mathrm{~m} / \mathrm{s}$ and emitting a screech of frequency 3500 Hz ? Take the speed of sound to be $331 \mathrm{~m} / \mathrm{s}$.
3. A car passes through an intersection at $1.00 \times 10^{2} \mathrm{~km} / \mathrm{hr}$. If the air temperature is 20.0 ${ }^{\circ} \mathrm{C}$ and the frequency of the car's horn is $3.00 \times 10^{2} \mathrm{~Hz}$, what change in frequency would a stationary observer notice as the car passes? Note: $\Delta f=f_{\text {towards }}-f_{\text {away }}$
4. Two police cars pass each other, both moving at $80.0 \mathrm{~km} / \mathrm{hr}$. The air temperature is 25.0 ${ }^{\circ} \mathrm{C}$. If each car sounds its siren with a frequency $4.00 \times 10^{2} \mathrm{~Hz}$, what change in frequency will be heard by each policeman as the cars pass?
5. A sound meter at a race track records the frequency of the exhaust of an approaching race car to $6.00 \times 10^{2} \mathrm{~Hz}$. The actual frequency is known to be $5.30 \times 10^{2} \mathrm{~Hz}$. The air temperature is $20.0^{\circ} \mathrm{C}$. How fast is the car going?
6. A sound meter records the exhaust frequency of a receding race car to be $4.00 \times 10^{2} \mathrm{~Hz}$. The actual frequency is $4.50 \times 10^{2} \mathrm{~Hz}$. If the air temperature is $15.0^{\circ} \mathrm{C}$, how fast is the car going?

Solutions:

1. A. $167 \mathrm{~Hz}, 136 \mathrm{~Hz}$
B. 150 Hz
2. $3.79 \times 10^{3} \mathrm{~Hz}$
3. 48.9 Hz
4. 103 Hz
5. $40.0 \mathrm{~m} / \mathrm{s}$
6. $42.5 \mathrm{~m} / \mathrm{s}$
