Name: _

Practice 17.4 - Doppler Effect

Equations:

v = 331.3
$$\sqrt{1 + \frac{T}{273.15}} \approx 331.3 + 0.606 T m/s$$
 $f_o = f_s \frac{v \pm v_o}{v \pm v_s}$

- 1. Suppose a train that has a 150-Hz horn is moving at 35.0 m/s in still air on a day when the speed of sound is 340 m/s.
 - A. What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it passes?

- B. What frequency is observed by the train's engineer traveling on the train?
- 2. What frequency is received by a mouse just before being dispatched by a hawk flying at it at 25.0 m/s and emitting a screech of frequency 3500 Hz? Take the speed of sound to be 331 m/s.

3. A car passes through an intersection at 1.00 × 10² km/hr. If the air temperature is 20.0 °C and the frequency of the car's horn is 3.00 × 10² Hz, what change in frequency would a stationary observer notice as the car passes? Note: $\Delta f = f_{towards} - f_{away}$

4. Two police cars pass each other, both moving at 80.0 km/hr. The air temperature is 25.0 °C. If each car sounds its siren with a frequency 4.00 x 10² Hz, what change in frequency will be heard by each policeman as the cars pass?

5. A sound meter at a race track records the frequency of the exhaust of an approaching race car to 6.00×10^2 Hz. The actual frequency is known to be 5.30×10^2 Hz. The air temperature is 20.0 °C. How fast is the car going?

6. A sound meter records the exhaust frequency of a receding race car to be 4.00×10^2 Hz. The actual frequency is 4.50×10^2 Hz. If the air temperature is 15.0 °C, how fast is the car going?

<u>Solutions</u>: 1. A. 167 Hz, 136 Hz B. 150 Hz 2. 3.79 x 10³ Hz 3. 48.9 Hz 4. 103 Hz 5. 40.0 m/s 6. 42.5 m/s