Physics 200 (Stapleton) Name: . Practice Quiz: Chapter 18-19 Waves and Sound

I. Matching (Select the correct SI unit for each wave parameter).

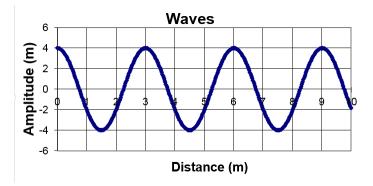
1. period	A. seconds
2. angular frequency	B. meters per second
3. amplitude	C. radians per second
4. wavelength x frequency	D. meters
5. frequency	E. Hertz
6. wavelength	

7. speed of sound

II. Multiple Choice (Choose the one best answer for each question.) 8. Which sound has the fastest speed in air at 0.0 °C?								
			•			It is the same	for both	
9. Which sound has the largest wavelength in air at 0.0 °C?								
	A. 220 Hz	tuning fork	B. 4	40 Hz tun	ing C.	It is the same	for both	
10. Which sound has the largest frequency in air at 0.0 °C?								
	A. 220 Hz	tuning fork	B. 4	40 Hz tun	ing C.	It is the same	for both	
11. As the temperature of the air decreases, the speed of sound								
	A. increas	ies	B. decr	reases	С.	stays the same	2	
12.	How many bea sounded simul		eard whe	n two tun	ing forks of	512 Hz and 50	8 Hz are	
	A. 1 Hz	,	<i>C</i> . 4	Hz	D. 510 Hz	E. 1020 F	łz	
13.	How many wav resonance at 1	5			vith one clos	ed when you ha	ve	
		B. 1/2	C. 3/4	•	. E.	5/4		

- 14. When shaking a string at one end that is attached to a post at the other end with just the right frequency to form a standing wave, the parts of the string that have maximum movement are called
 - A. fundamentals B. harmonics C. nodes D. antinodes
- 15. Transverse waves have a disturbance that is
 - A. in the same direction as the motion of the wave.
 - B. perpendicular to the direction of motion of the wave.
 - C. counterclockwise to the direction of the wave.
 - D. clockwise to the direction of the wave.
- 16. Sound waves are an example of a longitudinal wave.A. TrueB. FalseC. Unable to determine
- 17. Water waves are an example of a longitudinal wave.A. TrueB. FalseC. Unable to determine
- 18. When two waves are added together, you can get
 - A. constructive interference.
 - B. destructive interference.
 - C. standing waves.
 - D. All of the above.
- 19. A sound source moving away from you (compared to the same sound source at rest) will have
 - A. a higher pitch
 - B. a lower speed of sound
 - C. a lower frequency
 - D. a smaller wavelength
 - E. the same frequency
- 20. As the frequency of a tone increases,
 - A. the speed of sound increases.
 - B. the speed of sound decreases.
 - C. the frequency decreases.
 - D. the wavelength increases.
 - E. the wavelength decreases.

III. Problems:


- 1. At 35.0 °C, how much time will elapse between the firing of a gun and return of its echo from a cliff that is 2.60 km away?
- 2. Find the length of an organ pipe closed at one end that produces a fundamental frequency of 262 Hz (i.e. middle C) when the air temperature is 24.0°C.
- 3. A military sea mine is detonated at the surface of the water and the sound of the blast travels both through the air and the water. A Navy Seal swims right on the surface 1.60 km away from the blast. The sound travels through the sea water at 1540 m/s. The air temperature is 20.0 °C. How much sooner will the Navy Seal hear the blast through the water than he does through the air?

4. Calculate the speed of sound on a day when a 963 Hz frequency has a wavelength of 0.351 m.

- 5. What is the wavelength of a water wave that has a frequency of 0.200 Hz and a speed of 3.00 m/s?
- 6. The human range for hearing is commonly given as 20 to 20,000 Hz (though there is considerable variation between individuals, especially at high frequencies). At 22.0 °C, what is the wavelength range for human hearing?

7. An ambulance approaches a pedestrian standing on the side of a hot desert road at 108 km/hr. If the ambulance's siren produces a steady tone of 675 Hz, what frequency will the observer hear? The air temperature is 42.0 °C.

- 8. Given v = 90.0 m/s, find (2 points each)
 - $\boldsymbol{A}. \ \lambda$
 - B.f
 - С. Т
 - D. A

9. On a hot summer afternoon, a student listens to a passing stock car and hears a Doppler shift. The student recreates the shift by playing two notes indicated on the ukulele to the right. The air temperature is 33°C. What was the velocity of the car? If the distance between a guitar's nut and saddle is 40cm, what distance should there be between its nut and 2nd fret?

$$\underline{Equations:} \\
 f = \frac{1}{T} \qquad v = \lambda f \qquad v = d/t \\
 V_{sound in air} = (331.4 + 0.6T_{c})m/s \qquad V_{sound in air} = \left(331.1 * \sqrt{1 + \frac{T_{c}}{273.15}}\right)m/s \\
 f_{o} = f_{s} \frac{v \pm v_{o}}{v \pm v_{s}} \qquad v_{source} = v_{sound} \left(\frac{2\frac{\Delta Pitch}{12} - 1}{2\frac{\Delta Pitch}{12} + 1}\right) \qquad f_{(n half steps higher)} = f_{0} \left(2^{\frac{n}{12}}\right)$$