Torque

I. torque

A. The rotational equivalent of force is \qquad . Its symbol is \qquad .

B. Torque $=$ lever $\operatorname{arm}(r) \times$ perpendicular force (F).
C. When $\theta=90^{\circ}$,

When $\theta=0^{\circ}$,

Torque is a maximum when $\theta=$ \qquad .

II. Rotational Equilibrium

A. In rotational equilibrium, $\sum_{i} \tau_{i}=$

In other words, the clockwise torques $=$ the counterclockwise torques
B. Examples of rotational equilibrium:

4. Find the force needed to hold the 5.0-meter beam that weighs 500 N level.

5. Find the force needed to hold the same beam level with the addition of a hanging weight.

I. Find the force, F, needed to keep the bar level. The bar has a weight of 100. N. The location of the center of mass is designated by the downward arrow and the W.

II. Find the location of the fulcrum so that the bar balances. In case A), assume the bar has negligible mass. In cases B) and C), the location of the center of mass is again designated by the downward arrow and the W.

III. Find the force, F, needed to balance the bar. In cases A) and C), assume the bars have negligible mass. In case B), the location of the center of mass is again designated by the downward arrow and the W.

Solutions:

I. A. 50.0 N
B. 25.0 N
C. 75.0 N
II. A. 2.40 m from left edge
B. 1.43 m right of center
C. 1.20 m left of center
III. A. 100 N
B. 213 N
C. 250 N

Name: \qquad

Notes - 10.1 Angular Acceleration

1. What is the definition of angular speed ω ? What are the units of ω ?
2. How are velocity and angular speed related?
3. What is the definition of angular acceleration α ? What are the units of α ?
4. Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s .
A. Calculate the angular acceleration in $\mathrm{rad} / \mathrm{s}^{2}$. Show your work.
B. If she now slams on the brakes, causing an angular acceleration of $-87.3 \mathrm{rad} / \mathrm{s}^{2}$, how long does it take the wheel to stop? Show your work.
5. How are tangential acceleration and angular acceleration related?
6. Distinguish between tangential acceleration $\left(a_{t}\right)$ and centripetal acceleration $\left(a_{c}\right)$?
7. A powerful motorcycle can accelerate from 0 to $30.0 \mathrm{~m} / \mathrm{s}$ (about $108 \mathrm{~km} / \mathrm{h}$) in 4.20 s . What is the angular acceleration of its 0.320 -m-radius wheels? Show your work.

Practice-10.1 Angular Acceleration

1. At its peak, a tornado is 60.0 m in diameter and carries $500 \mathrm{~km} / \mathrm{h}$ winds. What is its angular velocity in revolutions per second?
2. An ultracentrifuge accelerates from rest to $100,000 \mathrm{rpm}$ in 2.00 min .
A. What is its angular acceleration in $\mathrm{rad} / \mathrm{s}^{2}$?
B. What is the tangential acceleration of a point 9.50 cm from the axis of rotation?
C. What is the radial acceleration in $\mathrm{m} / \mathrm{s}^{2}$ and multiples of g of this point at full rpm?
3. A drum rotates around its central axis at an angular velocity of $12.60 \mathrm{rad} / \mathrm{s}$. If the drum then slows at a constant rate of $4.20 \mathrm{rad} / \mathrm{s}^{2}$,
A. How much time does it take to come to a stop?
[Note: $\omega_{f}=\omega_{0}+\alpha \dagger$]
B. Through what angle does it rotate before coming to a stop?
[Note: $\theta_{f}-\theta_{0}=\omega_{0} \dagger+\frac{1}{2} \alpha t^{2}$]
4. Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0 s , it rotates 25 rad . During that time, what is the magnitude of the angular acceleration? [Note: $\theta_{f}-\theta_{0}=\omega_{0} \dagger+\frac{1}{2} \alpha \dagger^{2}$]

Answers:

1. $0.737 \mathrm{rev} / \mathrm{s}$
3 A. 3.00 s
$2 A .87 .3 \mathrm{rad} / \mathrm{s}^{2}$
2B. $8.29 \mathrm{~m} / \mathrm{s}^{2}$
2C. $1.04 \times 10^{7} \mathrm{~m} / \mathrm{s}^{2}, 1.06 \times 10^{6} \mathrm{~g}$

Notes - 10.2 Kinematics of Rotation

1. Fill in the table below for the translational and rotation kinematic equations.

Translational (linear)	Rotational
$\Delta x=v \Delta t$ (or $v=\Delta x / \Delta t)$	
$v=v_{0}+a t$	
$\Delta x=v_{0} t+\frac{1}{2} a t^{2}$	
$v^{2}=v_{0}{ }^{2}+2 a(\Delta x)$	

2. A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel. The whole system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is given an angular acceleration of $110 \mathrm{rad} / \mathrm{s}^{2}$ for 2.00 s .
A. What is the final angular velocity of the reel? Show your work.
B. At what speed is fishing line leaving the reel after 2.00 s elapses? Show your work.
C. How many revolutions does the reel make? Show your work.
D. How many meters of fishing line come off the reel in this time? Show your work.
3. A spinning fishing reel has an initial angular velocity is $\omega 0=220 \mathrm{rad} / \mathrm{s}$. If the fisherman applies a brake to the spinning reel, achieving an angular acceleration of $-300 \mathrm{rad} / \mathrm{s}^{2}$, how long does it take the reel to come to a stop?
4. Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its $0.350-\mathrm{m}$-radius wheels an angular acceleration of $0.250 \mathrm{rad} / \mathrm{s}^{2}$.
A. After the wheels have made 200 revolutions (assume no slippage), how far has the train moved down the track?
B. After the wheels have made 200 revolutions (assume no slippage), what are the final angular velocity of the wheels and the linear velocity of the train?

Answers:

1. 0.733 s
2. A. 440 m
B. $25.1 \mathrm{rad} / \mathrm{s}, 8.77 \mathrm{~m} / \mathrm{s}$
3. A door opens more slowly if you push it closer to its hinges. The door will also open more slowly if it is more massive. From a torque and angular acceleration standpoint, the
\qquad the applied force and the \qquad it is applied from the pivot point (the rotational axis), the greater the angular acceleration. The angular acceleration is \qquad proportional to mass. These relationships are analogous to the familiar relationships of force, mass, and acceleration.
4. Starting with Newton's $2^{\text {nd }}$ Law, derive an expression for torque t in terms of mass m, lever arm r and angular acceleration α (and introduce I "Rotational Inertia" or "moment of inertia")
5. Compare Newton's second law for linear motion and rotational motion.
6. The two definitions of torque:
7. Rotational Inertia (I) of Various Objects
A. A single point mass:
B. Multiple point masses:
C. Other shapes - see chart
8. Calculate the rotational inertia of a solid sphere of mass $M=5.0 \mathrm{~kg}$ and a radius of $R=$ 0.25 m .
9. Calculate the rotational inertia of a solid cylinder of mass $M=2.0 \mathrm{~kg}$ and a radius of $R=$ 0.075 m about its central axis.
10. Suppose you exert a force of 180 N tangential to a $0.280-\mathrm{m}$-radius $75.0-\mathrm{kg}$ grindstone (a solid disk).
A. What torque is exerted?
B. What is the angular acceleration assuming negligible opposing friction?
C. What is the angular acceleration if there is an opposing frictional force of 20.0 N exerted 1.50 cm from the axis?

Answers:

1. 0.733 s
2. A. 440 m
B. $25.1 \mathrm{rad} / \mathrm{s}, 8.77 \mathrm{~m} / \mathrm{s}$
3. $0.13 \mathrm{~kg} \mathrm{~m}^{2} \quad 4.5 .6 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}$
4. A. 50.4 Nm
B. $17.1 \mathrm{rad} / \mathrm{s}^{2}$
C. $17.0 \mathrm{rad} / \mathrm{s}^{2}$

Notes - 10.4 Rotational Kinetic Energy

1. Starting with the linear (or tangential) kinetic energy formula, derive a formula for the rotational kinetic energy of a single mass m, with a velocity v, revolving around an axis at a radius r. The formula should be in terms of I and w.
2. Calculate the final speed of a solid cylinder that rolls down a $2.00-\mathrm{m}$-high incline. The cylinder starts from rest, has a mass of 0.750 kg , and has a radius of 4.00 cm .
3. Calculate the final speed of a hoop of the same radius $(4 \mathrm{~cm})$ that is allowed to roll down an incline of the same height (2m)
4. Compare the speeds of thin hoops and solid cylinders, in general, after rolling down ramps (assuming the objects' radii and the ramp heights are identical, and that there is no friction).
5. What is the final velocity of a 1.00 kg hoop starting from rest that rolls without slipping down a hill 5.00 meters high?
6. What is the final velocity of a 1.0 kg solid disk/cylinder starting from rest that rolls without slipping down a hill 5.00 meters high?
7. Calculate the rotational kinetic energy of Earth on its axis. Assume the Earth is a uniform solid sphere of mass $M=5.97 \times 10^{24} \mathrm{~kg}$ and a radius $R=6371 \mathrm{~km}$.
8. What is the rotational kinetic energy of Earth in its orbit around the Sun? $M=5.97 \times$ $10^{24} \mathrm{~kg}$ and $\mathrm{R}=150$ million kilometers.
9. A ball with an initial velocity of $8.00 \mathrm{~m} / \mathrm{s}$ rolls up a hill without slipping. Treating the ball as a spherical shell, calculate the vertical height it reaches.

Notes - 10.5 Angular Momentum and Its Conservation

1. Write the equation for linear momentum.
2. Write the equation for angular momentum.
3. State the Law of Conservation of Angular Momentum in words.
4. Write the equation for the Conservation of Momentum.
5. Suppose an ice skater is spinning at $0.800 \mathrm{rev} / \mathrm{s}$ with her arms extended. She has a moment of inertia of $2.34 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ with her arms extended and a moment of inertia equal to $0.363 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.)
A. What is her initial angular velocity, in rad/s?
B. What is her initial angular momentum?
C. What is her final angular velocity?
B. What is her rotational kinetic energy before and after she does this? Why does her $K E_{R}$ change?

Name: \qquad

Practice - 10.5 Angular Momentum and Its Conservation

1. A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of $0.500 \mathrm{rev} / \mathrm{s}$. What is its angular velocity after an initially motionless $22.0-\mathrm{kg}$ child gets onto it by grabbing its outer edge? This might be easier to visualize if you picture the merry-go-round snagging the child and yanking $\mathrm{him} /$ her into motion. [You may assume that the merry-go-round is a uniform disc with $\mathrm{I}=1 / 2 \mathrm{mr}^{2}$ and that the child is a point source with $\mathrm{I}=\mathrm{mr}^{2}$.]
2. Ice Skater
A. Calculate the angular momentum of an ice skater spinning at $6.00 \mathrm{rev} / \mathrm{s}$ given his moment of inertia is $0.400 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
B. He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity decreases to $1.25 \mathrm{rev} / \mathrm{s}$.
C. Suppose instead he keeps his arms in and allows friction of the ice to slow him from $6.00 \mathrm{rev} / \mathrm{s}$ to $3.00 \mathrm{rev} / \mathrm{s}$. What average torque was exerted if this takes 15.0 s ?
3. What is the angular momentum of Earth rotating on its axis? MEarth $=5.97 \times 10^{24} \mathrm{~kg}$ and $R_{\text {Earth }}=6371 \mathrm{~km}$. Assume the Earth is a solid uniform sphere ($I=2 / 5 \mathrm{mr}^{2}$)
4. What is the angular momentum of the Moon in its orbit around Earth? The orbital radius of the Moon is $384,399 \mathrm{~km}$, the Moon's mass is $7.35 \times 10^{22} \mathrm{~kg}$ and its orbital period is 27.321 days. A) What value should you use for I ? b) What is the angular momentum?

Answers:

1. $2.30 \mathrm{rad} / \mathrm{s}$
2. A. $15.1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
B. $1.92 \mathrm{~kg} \mathrm{~m}^{2}$
C. -0.503 N m
3. $7.05 \times 10^{33} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
4. $2.89 \times 10^{34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$

Pennington 2015-16 Chapter 9-10 Test Review and Practice Test

Key Equations

$\Delta x=\Delta \theta r$	$v=\omega r$	$a_{t}=\alpha r$
$\omega_{\text {avg }}=\frac{\Delta \theta}{\Delta t}$	$\alpha_{\text {avg }}=\frac{\Delta \omega}{\Delta t}$	$a_{c}=\frac{v^{2}}{r}=\omega^{2} r$
$\Delta \theta=\omega_{i} t+\frac{1}{2} \alpha t^{2}$	$\omega^{2}=\omega_{i}^{2}+2 \alpha(\Delta \theta)$	$\omega=\omega_{i}+\alpha t$
$K_{\text {rot }}=\frac{1}{2} I \omega^{2}$	$I=\sum_{i=1}^{n} m_{i} r_{i}^{2}$ (discrete masses)	
$\tau=r F=I \alpha$	$L=r p=r m v=I \omega \quad$ When $\tau_{\text {net }}=0, \quad L_{i}=L_{f} \quad$ and $I_{i} \omega_{i}=I_{f} \omega_{f}$	

For equilibrium, with regard to both rotational and linear motion: $\tau_{c w}=\tau_{c c w}$ and $\bar{F}_{\text {net }}=0$

Multiple Choice

- Balancing beams
- Relationship of τ to r, F, I and α
- Units for all the parameters
- Ways to increase (or decrease) torque
- Use of kinematic equations to determine $s, \dagger, \omega, \alpha, \theta$
- Relationship of linear parameters s, v, a_{t}, a_{r} to rotational parameters θ, ω, α
- Which shape wins the race down a ramp
- Determining angular momentum
- Which configuration has more rotational inertia
- Definition of static equilibrium

Problems

- Taken from practice problems in class

Chapter 9-10 Practice Test

Part I. Multiple Choice

1. With the same non-zero clockwise torque applied, if an object's rotational inertia is increased, its angular acceleration
A. increases.
B. decreases.
C. stays the same.
2. The torque applied to a bolt that is stuck can be increased by
A. increasing the length of the lever arm.
B. increasing the magnitude of the applied force.
C. changing the direction of the force to be perpendicular to the lever arm.
D. All of the above.
3. The units of angular speed are
A. $\mathrm{kg} \mathrm{m}{ }^{2}$
B. rad
C. $\mathrm{rad} / \mathrm{s}$
D. $\mathrm{rad} / \mathrm{s}^{2}$
E. s^{-1}
4. The units of angular acceleration are
A. $\mathrm{kg} \mathrm{m}^{2}$
B. rad
C. $\mathrm{rad} / \mathrm{s}$
D. $\mathrm{rad} / \mathrm{s}^{2}$
E. s^{-1}
5. A wheel with a radius of 0.500 m rotates through an angle of 4π. How far has a point on the outer rim traveled?
A. 0.500 m
B. 3.14 m
C. 6.28 m
D. 9.42 m
E. 25.1 m
6. In an effort to tighten a bolt, a force F is applied as shown in the figure below. If the distance from the end of the wrench to the center of the bolt is 25.0 cm and $F=5.00 \mathrm{~N}$, what is the magnitude of the torque produced by F ?
A. 0.00 Nm
B. 1.25 Nm
C. 5.00 Nm
D. 75.0 Nm
E. 125.0 Nm

7. If a wheel turning at a constant rate completes exactly 100 revolutions in 10.0 s , its angular speed is:
A. $0.314 \mathrm{rad} / \mathrm{s}$
B. $0.628 \mathrm{rad} / \mathrm{s}$
C. $10.0 \mathrm{rad} / \mathrm{s}$
D. $62.8 \mathrm{rad} / \mathrm{s}$
E. $314 \mathrm{rad} / \mathrm{s}$
8. A child initially standing on the edge of a freely spinning merry-go-round moves to the center. Which one of the following statements is necessarily true concerning this event and why?
A. The angular speed of the system increases because the moment of inertia of the system has decreased.
B. The angular speed of the system decreases because the moment of inertia of the system has decreased.
C. The angular speed of the system increases because the moment of inertia of the system has increased.
D. The angular speed of the system decreases because the moment of inertia of the system has increased.
E. The angular speed of the system remains the same because the net torque on the merry-go-round is zero.
9. When a spinning ice skater draws in her outstretched arms, her kinetic energy increases. Where does this added energy come from?
A. The added energy comes from a decrease in her angular momentum.
B. The added energy comes from the dark energy of the vacuum.
C. The added energy comes from the work the skater does pulling in her arms.
D. The added energy comes from the decreased angular speed.
E. The added energy is transferred from the ice to the skater.
10. In order to increase the torque created by F_{1} below, the fulcrum should be moved
A. closer to F_{1}
B. closer to F_{2}

11. Which one of the following statements provides the best definition of rotational inertia?
A. Rotational inertia is the momentum of a rotating object.
B. Rotational inertia is equal to the mass of the rotating object.
C. Rotational inertia is the resistance of an object to a change in its angular velocity.
D. Rotational inertia is the resistance of an object to a change in its linear velocity.
12. For a body to be in equilibrium, what conditions must apply?
A. $\tau_{c w}=0$ and $\tau_{c c w}=0$
B. $F_{x \text { net }}=F_{y \text { net }}$
C. $\tau_{c w}=\tau_{c c w}$ and $F_{x \text { net }}=F_{y \text { net }}$
D. $\tau_{c w}=\tau_{c c w}, F_{x \text { net }}=0$ and $F_{y \text { net }}=0$
13. A comet orbiting the Sun can be considered an isolated system with no outside forces or torques acting on it. As the comet moves in its highly elliptical orbit, what remains constant?
A. Its distant from the Sun
B. Its angular speed
C. Its linear speed
D. Its angular momentum
E. The gravitational force between the comet and the Sun.
14. A uniform disk, a hoop and a uniform solid sphere are held stationary at the top of a ramp. All 3 objects have the same mass and radius. When released, they roll down the ramp without slipping. Rank the objects according to their speed at the bottom of the incline from least to greatest.

$$
I_{\text {disk }}=1 / 2 M R^{2} \quad I_{\text {hoop }}=M R^{2} \quad I_{\text {solid sphere }}=2 / 5 M R^{2}
$$

A. hoop, disk, sphere
C. sphere, hoop, disk
B. disk, hoop, sphere
D. sphere, disk, hoop
15. A disk initially rolls along the flat ground at a constant speed without slipping. If linear speed of the disk is now doubled,
A. the angular speed is increases by $2 X$ and the kinetic energy increases by $2 X$.
B. the angular speed is increases by $4 X$ and the kinetic energy increases by $2 X$.
C. the angular speed is increases by $2 X$ and the kinetic energy increases by $4 X$.
D. the angular speed is increases by $4 X$ and the kinetic energy increases by $4 X$.
E. both the angular speed and the kinetic energy remain the same.
16. What happens when a spinning ice skater draws in her outstretched arms?
A. Her moment of inertia decreases causing her to speed up.
B. Her angular momentum decreases.
C. The torque that she exerts increases her moment of inertia.
D. Her angular momentum increases.
E. Her moment of inertia decreases causing her to slow down.
17. A 3 kilogram mass is attached 2 meters from a rotating rod. What is the rotational inertia of the mass?
A. $12 \mathrm{~kg}^{2}$
B. $54 \mathrm{~kg}^{2}$
C. $6 \mathrm{kgm}^{2}$
D. $18 \mathrm{~kg}^{2}$
E. $36 \mathrm{~kg}^{2}$
18. A torque applied to a solid object that is free to move will produce
A. a linear acceleration.
B. rotational equilibrium.
C. an angular acceleration.
D. rotational inertia.
19. Assume this bar has mass M and forces F_{1} and F_{2} are pulling down on each end. In order for the bar to be balanced:
A. $F_{1}=F_{2}$
B. $F_{1}<F_{2}$
C. $r_{1} F_{1}=r_{2} F_{2}$
D. $\tau_{c w}=0$ and $\tau_{c \mathrm{cw}}=0$
E. $r_{1} F_{1}=r_{C M M g}+r_{2} F_{2}$

II. Problems:

1. An ultracentrifuge accelerates from rest to a top speed of 1870 revolutions per second in 2.00 \min.
A. What is its angular acceleration in $\mathrm{rad} / \mathrm{s}^{2}$?
B. What is the tangential acceleration at a point 7.00 cm from the axis of rotation?
C. What is the radial (i.e. centripetal) acceleration at a point 7.00 cm from the axis of rotation when the centrifuge is rotating at top speed?
2. A drum rotates around its central axis at an initial angular speed of $11.50 \mathrm{rad} / \mathrm{s}$. The drum then slows at a constant rate of $2.60 \mathrm{rad} / \mathrm{s}^{2}$.
A. How much time does it take to come to a stop?
B. Through what angle does it rotate before coming to a stop?
3. Suppose you exert a 1450 N force tangent to the surface of a solid sphere that has a radius of 0.340 meters and a mass of 13.0 kg . $I_{\text {solid sphere }}=2 / 5 \mathrm{MR}^{2}$.
A. What torque is exerted?
B. What is the angular acceleration assuming negligible opposing friction?
4. Ice Skater
A. Calculate the angular momentum of an ice skater spinning at $3.60 \mathrm{rev} / \mathrm{s}$ given that her moment of inertia is $0.320 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
B. She then reduces her rate of spin (her angular velocity) by extending her arms. Find the new value of her moment of inertia if her angular velocity decreases to $1.20 \mathrm{rev} / \mathrm{s}$.
5. A $0.440-\mathrm{kg}$ soccer ball with a radius of 11.2 cm is initially at rest at a height of 3.90 meters at the top of a ramp. It is then released. The soccer ball can be thought of as a hollow spherical shell, $I=\frac{2}{3} M R^{2}$.
A. What is the final velocity of the soccer ball at the bottom of the ramp if the ramp is frictionless, so the ball just slides down the ramp without rolling?
B. What is the final velocity of the soccer ball at the bottom of the ramp if there is friction and it rolls down the ramp without slipping?
6. What force needs to be applied at the end of a uniform 5.0 -meter beam to keep it level. A 240 N mass is hung 2.0 meters from the fulcrum. The beam weighs 600 N .

\qquad

Chapter 9-10 Test Review \#2

Part I. Multiple Choice

1. With the same non-zero clockwise torque applied, if an object's angular acceleration is increasing, its moment of inertia must be
A. increasing.
B. decreasing.
C. staying the same.
2. A rubber band car is powered by a rubber band pulling tangent to the axle. Increasing the wheel diameter
A. increases the torque B. decreases the torque
C. has no effect on the torque
3. The units of rotational inertia are
A. $\mathrm{kg} \mathrm{m}{ }^{2}$
B. rad
C. rad/s
D. $\mathrm{rad} / \mathrm{s}^{2}$
E. $k g \mathrm{~m}^{2} \mathrm{~s}^{-1}$
4. The units of angular momentum are
A. $\mathrm{kg} \mathrm{m}{ }^{2}$
B. rad
C. rad/s
D. $\mathrm{rad} / \mathrm{s}^{2}$
E. $k g \mathrm{~m}^{2} \mathrm{~s}^{-1}$
5. A wheel with a radius of 0.500 m rolls for a distance of 6π meters. Through what angle has the a point on the wheel rotated?
A. 3.14 radians
B. 6 radians
C. 18.8 radians D. 37.7 radians
6. In an effort to tighten a bolt to a torque of $2.5 \mathrm{~N} \cdot \mathrm{~m}$, a force \mathbf{F} is applied as shown in the figure below. If the distance from the end of the wrench to the center of the bolt is 25.0 cm , what force must be applied at the end of the wrench?
A. 1 N
B. 2.5 N
C. 5.00 N
D. 10 N
E. 25 N

7. If a wheel turning at a constant rate completes exactly 20 revolutions in 10.0 s , its angular speed is:
A. $0.314 \mathrm{rad} / \mathrm{s}$
B. $0.628 \mathrm{rad} / \mathrm{s}$
C. $10.0 \mathrm{rad} / \mathrm{s}$
D. $6.28 \mathrm{rad} / \mathrm{s}$
E. $31.4 \mathrm{rad} / \mathrm{s}$
8. A child initially standing at the center freely spinning merry-go-round moves to the edge. Which one of the following statements is necessarily true concerning this event and why?
A. The angular speed of the system increases because the moment of inertia of the system has decreased.
B. The angular speed of the system decreases because the moment of inertia of the system has decreased.
C. The angular speed of the system increases because the moment of inertia of the system has increased.
D. The angular speed of the system decreases because the moment of inertia of the system has increased.
E. The angular speed of the system remains the same because the net torque on the merry-go-round is zero.
9. In order to increase the torque created by F_{2} below, the fulcrum should be moved
A. closer to F_{1}
B. closer to F_{2}

10. A comet orbiting the Sun can be considered an isolated system with no outside forces or torques acting on it. As the comet moves closer to the sun in its highly elliptical orbit, what happens to its angular momentum?
a. It increases
b. It decreases
c. It stays the same
11. As a comet moves closer to the sun in its highly elliptical orbit, what happens to its rotational inertia?
a. It increases
b. It decreases
c. It stays the same
12. As a comet's position in its orbital path changes, its moment of inertia doubles due to the change in position. What happens to its kinetic energy as its moment of inertia doubles?
a. multiplied by $0.5 x$
b. No change
c. multiplied by $2 x$
d. multiplied by $4 x$
13. Which of the following determine(s) the speed of a rolling object as it reaches the bottom of a smooth hill? Select all that apply. [Assume that all objects will actually roll without slipping.]
a. Object radius
b. Object mass
c. Object Shape (distribution of mass)
14. A disk initially rolls along the flat ground at a constant speed without slipping. If the disk's radius is now doubled without changing its translational speed or its mass,
A. the angular speed decreases by 2 X and the kinetic energy decreases.
B. the angular speed decreases by $4 X$ and the kinetic energy decreases.
C. the angular speed decreases by $2 X$ and the kinetic energy remains the same.
D. the angular speed decreases by $4 X$ and the kinetic energy remains the same.
15. What happens when a gymnast flipping in a frictionless space opens up from a tucked position?
A. His moment of inertia decreases causing him to speed up.
B. His angular momentum decreases.
C. The torque that he exerts increases his moment of inertia.
D. His angular momentum increases.
E. His moment of inertia increases causing him to slow down.
16. A 3 kilogram rotating mass has a rotational radius of 1 m and a moment of inertia of $3 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What shape could it be?
A. Thin hoop
B. Sphere
C. Disk
17. If a mechanic applies a force (F) at an acute angle θ, relative to the length of a wrench, torque generated equals
A. rFsin θ
B. $\mathrm{rFcos} \theta$
c. rFtan θ
d. rF

Part II. Problems:

1. A car accelerates from rest to $3 \mathrm{~m} / \mathrm{s}$ in a time of 1.5 second. The car's wheels have radii of 0.04 m .
a. How fast do the wheels accelerate, in rad $/ \mathrm{s}^{2}$?
b. Through how many radians do the wheels rotate during this 1.5 s ?
c. What is the angular velocity of the wheels at the end of the 1.5 s , in rpm?
2. A car's wheels are rotating at a rate of 3 revolutions per second. If the wheels slow down at a rate of $3 \mathrm{rad} / \mathrm{s}^{2} \ldots$
a. How much time does it take the car to come to a stop?
b. How many revolutions do the wheels make before coming to a stop?
3. In an attempt to spin a basketball (initially at rest), a child places a ball on the tip of his finger and applies a force of 3 N tangent to its surface. The basketball has a mass of 0.65 kg and a radius of 0.12 m . [$\mathrm{I}_{\text {hollow sphere }}=2 / 3$ mr^{2}]
a. How much torque is exerted on the basketball by the child?
b. Assuming zero friction, what is the angular acceleration of the basketball?
c. If the child were able to maintain this acceleration for one minute, what angular velocity would the basketball have, in revolutions per second?
4. A woman coasts on unicycle, traveling horizontally off the edge of a cliff. From a bystander's perspective, her velocity as she leaves the cliff is $6 \mathrm{~m} / \mathrm{s}$ to the right. The unicycle wheel has a mass of 1.5 kg and a radius of 23 cm . For purposes of calculating moment of inertia, the wheel may be considered a thin hoop ($\mathrm{I}=\mathrm{mr}^{2}$). The woman and the unicycle remain vertical until, a few moments after leaving the cliff, she stops the wheel's rotation (relative to the rest of the unicycle). As she stops the wheel, she and her unicycle begin to rotate together, achieving a final rate of 10 rpm .
a. What is the wheel's angular velocity at the moment she leaves the cliff?
b. What is the wheel's angular momentum at the moment the woman leaves the cliff?
c. From the bystander's perspective, in which direction does the unicyclist begin to rotate after stopping the wheel?
d. What is the overall moment of inertia of the unicyclist/unicycle?
5. A visitor to Pizza Putt wants to roll a Skee-ball with enough speed so that it will have a velocity of $3 \mathrm{~m} / \mathrm{s}$ when it reaches the top of its ramp. The ball has a radius of 4 cm and a mass of 160 g . It is a solid sphere, so $\mathrm{I}=2 / 5 \mathrm{mr}^{2}$. The height of the ramp is 30 cm . What speed (translational speed) must the ski ball have when it reaches the bottom of the ramp, in order to have a velocity of $3 \mathrm{~m} / \mathrm{s}$ at the top of the ramp?
6. A 200 N force and a 300 N force are applied to the beam on the right in the locations indicated. Where should the fulcrum be placed in order to balance the 500 N beam?

4-Minute Drill
 Chapter 9-10

Distance a point on a body moves as the body rotates through an angle θ Velocity of a point on a body as the body rotates with angular speed ω Acceleration of a point on a body as the body's rotation rate increases Angular velocity in terms of θ

Angular acceleration in terms of ω

One of the rotational kinematic equations ($\Delta \Theta=$)

Another rotational kinematic equation ($\omega=$)

One more rotational kinematic equation ($\omega^{2}=$)

Rotational kinetic energy formula

Total kinetic energy of a rolling body

Rotational inertia of discrete particle of mass m at a distance r from the axis

Rotational inertia of a cylinder with the axis through the center of the flat face

Rotational inertia of a solid sphere with the axis through the center

Torque in terms of force applied at a given distance from the rotational axis

Torque (Newton's $2^{\text {nd }}$ Law for rotation)

Angular momentum
Another expression for angular momentum

Conservation of angular momentum

