\qquad

The Lens Equation: $\quad \frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}} \quad$ Magnification Equation: $M=\frac{H_{i}}{H_{o}}=\frac{-d_{i}}{d_{o}}$
** After the first problem or two, feel free to create a spreadsheet to speed up this task.

1. (object beyond 2 f) An object with a height of 1.2 cm is placed on top of the principal axis of a convex lens, 7.8 cm from the center of the lens. The focal length of the lens is 3 cm .
a. Where is the image located?
b. What is the image height?
c. Is the image upright or inverted?
d. What is the magnification of the object in this position?
e. Is the image real or virtual?
2. (object at 2f) An object with a height of $\mathbf{2 c m}$ is placed on top of the principal axis of a convex lens, $\mathbf{6 c m}$ from the center of the lens. The focal length of the lens is 3 cm .
a. Where is the image located?
b. What is the image height?
c. Is the image upright or inverted?
d. What is the magnification of the object in this position?
e. Is the image real or virtual?
3. (object between 1 f and 2 f) An object with a height of 1.5 cm is placed on top of the principal axis of a convex lens, 5 cm from the center of the lens. The focal length of the lens is $\mathbf{3 c m}$.
a. Where is the image located?
b. What is the image height?
c. Is the image upright or inverted?
d. What is the magnification of the object in this position?
e. Is the image real or virtual?
4. (object at f) An object with a height of 3 cm is placed on top of the principal axis of a convex lens, $\mathbf{3 c m}$ from the center of the lens. The focal length of the lens is $3 \mathbf{c m}$.
a. Where is the image located?
b. What is the image height?
c. Is the image upright or inverted?
d. What is the magnification of the object in this position?
e. Is the image real or virtual?
5. (object between lens and f) An object with a height of 1.7 cm is placed on top of the principal axis of a convex lens, $\mathbf{1 c m}$ from the center of the lens. The focal length of the lens is $\mathbf{3 c m}$.
a. Where is the image located?
b. What is the image height?
c. Is the image upright or inverted?
d. What is the magnification of the object in this position?
e. Is the image real or virtual?
