
Physics	200
----------------	-----

Name:

Notes: Chapter Sections 20.3, 20.4, and 21.1

Notes - 20.3 Resistance and Resistivity

- 1. The resistance of an object depends on its _____ and the ____ of which it is composed.
- 2. R=
- 3. Resistivity p is an _____ of the material, independent of its shape or size.

- 4. In home wiring, currents are limited and minimum wire thicknesses are specified because, as current and resistance increase, more _______ is produced in the wires,
- 4.5 Example Problem: What is the resistance of a 20.0-m-long piece of 12-gauge copper wire having a 2.053-mm diameter? (ρ_{Cu} = 1.72 x 10⁻⁸ Ω ·m)

Notes - 20.4 Electric Power and Energy

- 5. Power (P) is the _____ of energy use or energy conversion.
- 6. Voltage (electric potential) can be expressed as J/C, and Current (Amperes) can be expressed as C/s. Therefore, P=
- 7. The unit for power is ______.
- 8. 1 W = 1 _____
- 9. Given that V = IR, alternate expressions for power include:

10.	Power companies do not charge for power, they charge for, which is sold to you in units called kilowatt-hours. 1kWh =J.
	Notes - 21.1 Resistors in Series and Parallel
11.	Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow is called
12.	Label which resistors are in series and which are in parallel.
	$R_1 \rightleftharpoons R_2 \rightleftharpoons R_3 \rightleftharpoons R_4 \rightleftharpoons R_1 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4$
13.	Resistors in Series: A. Series resistances add. R _{series} =
	B. The current flowing through resistors in series is
	C. Individual resistors the overall voltage drop.
14.	Resistors in Parallel: A. Individual resistors' voltages
	B. Resistors in parallel the overall source current. C. Parallel resistances are found from

	ose the voltage output of a battery is 12.0 V, and the resistances for 3 resistors cted in series with the battery are R ₁ = 1.00 Ω , R ₂ = 6.00 Ω and R ₃ = 13.0 Ω .
A.	Draw a diagram of the circuit.
В.	What is the total resistance?
C.	Find the current.
D.	Calculate the voltage drop in each resistor, and show these add to equal the voltage output of the source.
E.	Calculate the power dissipated by each resistor.
F.	Find the power output of the source, and show that it equals the total power dissipated by the resistors.

16. Suppose the voltage output of a battery is 12.0 V, and the resistances for 3 resistors connected in parallel with the battery are R_1 = 1.00 Ω , R_2 = 6.00 Ω and R_3 = 13.0 Ω . A. Draw a diagram of the circuit.
B. What is the total resistance?
C. Find the total current.
D. Calculate the currents in each resistor, and show these add to equal the total current output of the source.
E. Calculate the power dissipated by each resistor.
F. Find the power output of the source, and show that it equals the total power dissipated by the resistors.