Mr. Pennington's Chapter 3 Test 2015-2016

I. Multiple Choice: Select the one best answer for each question. Where g is used, assume it equals 10 m/s^2 and neglect air resistance for falling/moving objects.

1. For a symmetric projectile with an initial velocity of v_0 , what other angle gives the same range as 60° ?

A) 5°

B) 30°

C) 45°

D) 60°

E) 75°

2. For a symmetric projectile with an initial velocity of v_0 , what angle gives the greatest range?

A) 5°

B) 30°

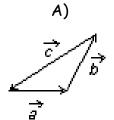
C) 45°

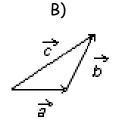
D) 60°

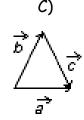
E) 75°

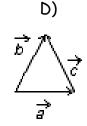
3. A projectile is shot vertically upward with a given initial velocity. It reaches a maximum height of 50.0 m. If, on a second shot, the initial velocity is tripled (i.e. 3X), then the projectile will reach a maximum height of:

A) 75 m


B) 100 m


C) 150 m


D) 200 m


E) 450 m

4. The vectors \vec{A} , \vec{B} and \vec{C} are related by $\vec{C} = \vec{A} + \vec{B}$. Which diagram below illustrates this relationship?

5. A bird flies at a speed of 15 meters per second with respect to the ground and the wind is blowing at a speed of 5 m/s second with respect to the ground. [Note: The wind could be blowing with the bird, in the opposite direction of the bird or all other possible directions.] Which one of the speeds listed below is a possible net speed (i.e. vector sum) of the bird with respect to the ground?

A) 3 m/s

B) 5 m/s

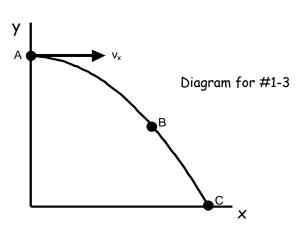
C) 9 m/s

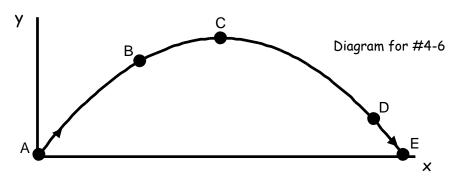
D) 18 m/s

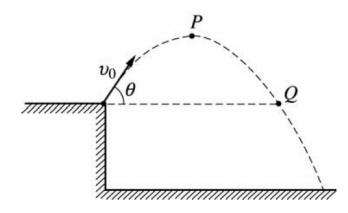
E) 25 m/s

For #6-11, the answers will be \langle , = or \rangle , but you will mark A, B or C on your Scantron sheet. Assume no air friction for these projectiles and consider only the <u>speed</u> of the projectile (i.e. disregard the + and - signs).

A) <





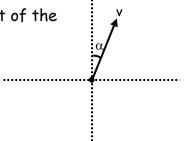


- 12. A vector has a component of 5 m in the +x direction and a component of 12 m in the +y direction. The magnitude of this vector is:
 - A) 13 m
- B) 15 m
- C) 17 m
- D) 60 m
- E) 169 m
- 13. A vector in the xy plane has an x-component of 14.0 and a y-component of 9.4. The angle it makes with the positive x axis is:
 - A) 26°
- B) 34°
- C) 45°
- D) 59°
- E) 66°

- 14. Which of the following cannot be a vector quantity?
 - A) velocity
- B) acceleration
- C) force
- D) temperature

Diagram for Questions 15 & 16

A rock is thrown from the edge of a cliff with an initial velocity v_0 at an angle θ with the horizontal as shown above. Point P is the highest point in the rock's trajectory and point Q is level with the starting point. Assume air resistance is negligible.


15. Which of the following correctly describes the horizontal and vertical speeds and the acceleration of the point at <u>Point P</u>?

	<u>Horizontal Speed</u>	<u>Vertical Speed</u>	<u>Acceleration</u>
A)	$v_0 \cos \theta$	0	9
B)	0	0	9
C)	$v_0 \cos \theta$	v_0 sin θ	9
D)	0	\mathbf{v}_{0} cos $\mathbf{\theta}$	9
E)	\mathbf{v}_0 cos θ	0	0

16. Which of the following correctly describes the horizontal and vertical <u>speeds</u> and the acceleration of the point at <u>Point Q</u>?

	<u>Horizontal Speed</u>	<u>Vertical Speed</u>	<u>Acceleration</u>
A)	$ extsf{v}_0$ cos $ heta$	0	g
B)	0	0	9
C)	$\mathbf{v_0}$ cos θ	v_0 sin θ	9
D)	0	\mathbf{v}_{0} cos θ	9
E)	\mathbf{v}_0 cos θ	0	0

- 17. A bullet shot horizontally from a gun. At the same instant, another bullet is simply dropped from the same height. Neglecting air resistance, the bullet shot from the gun
 - A) strikes the ground much later than the dropped bullet.
 - B) never strikes the ground.
 - C) strikes the ground at the same time as the dropped bullet
 - D) travels in a straight line.
 - E) strikes the ground much sooner than the dropped bullet.
- 18. If θ is the angle with respect to the +x-axis, the y-component of the vector A is given by
 - A) $A \cos \theta$
- B) $\mu A \cos \theta$
- C) A $\sin \theta$
- D) mg $A \sin \theta$
- E) $tan^{-1}\theta$
- 19. Given the diagram to the right, what is the x-component of the vector \mathbf{v} ?
 - A) $V \sin \alpha$
 - B) $V \cos \alpha$
 - C) V tan α
 - D) $V \sin^{-1}\alpha$
 - E) $\sqrt{v_{x}^{2}+v_{y}^{2}}$

- **II. Problems:** Clearly show your work. Be neat. Use the correct number of significant figures and circle your answers. All answers must have units. Assume $g = 9.8 \text{ m/s}^2$.
- 1. A force vector $\overset{\mathcal{L}}{F}$ has a magnitude of 12.0 N and a direction of 290.0° with respect to the +x axis.
 - A. Find the x-component of the force vector.
 - B. Find the y-component of the force vector.
- 2. A position vector r has x- and y-components of r_x = -6.50 m and r_y = 10.25 m.
 - A. Find the magnitude of the position vector.
 - B. Find the direction with respect to the +x axis of the position vector.
- 3. A projectile is launched at ground level with an initial speed of 40.0 m/s at an angle of 58.0° above the horizontal. It strikes a target above the ground 4.60 seconds later. [Note: This is <u>not</u> a symmetric projectile.] Assume the projectile is launched at $x_0 = 0.00$ m and $y_0 = 0.00$ m.
 - A. What is the x-position of the target?
 - B. What is the y-position of the target?
- 4. A ball is kicked with an initial velocity of 16.0 m/s in the horizontal direction and 12.0 m/s in the vertical direction. [Note: This is a symmetric projectile.]
 - A. What maximum height is attained by the ball?
 - B. For how long does the ball remain in the air?
 - C. What is the range of the ball (i.e. the horizontal distance traveled)?
 - D. At what speed does the ball hit the ground?
- 5. A ball is thrown <u>horizontally</u> from the top of a 60.0-m building and lands 150.0 m from the base of the building. Ignore air resistance.
 - A. How long is the ball in the air?
 - B. What must have been the initial velocity?
- 6. A boat with a calm water speed of 10.0 m/s crosses a river 3.00×10^2 m wide. The boat keeps its bow pointed directly across the river, but drifts downstream because the river current is 3.00 m/s.
 - A. Find the time needed to cross the river.
 - B. Find the distance the boat drifts downstream.