\qquad
\qquad tells you how something's position changes during one second.
\qquad tells you how something's velocity changes during one second.

Is acceleration a vector or scalar quantity?
Acceleration can happen in two fundamentally different ways:
1)
2)

Negative acceleration is also called \qquad
Common metric units for acceleration are:

The Analogous Relationship between Velocity and Acceleration:

If Pam has a velocity of $+6 \mathrm{~m} / \mathrm{s}$, that means she travels 6 m for every second that ticks by. Another way to say this is that, for each passing second, Pam adds $\mathbf{6 m}$ to her position.

Analogously, if Pam's acceleration is $+6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, this means...

Velocity adds \qquad each second.

Acceleration adds \qquad each second.

Velocity is the slope of a \qquad vs \qquad graph.

Velocity is the slope of a \qquad vs \qquad graph.

The acceleration formula:

Velocity describes a change in position over a time interval. Acceleration describes a change in velocity over a time interval.

Acceleration Formula Practice Problems:

1. Suppose your velocity is $2 \mathrm{~m} / \mathrm{s}$. One second later, your velocity is $6 \mathrm{~m} / \mathrm{s}$. What is your average acceleration over this time period?
2. When your watch reads 8:01:32 AM, your velocity is $6 \mathrm{~m} / \mathrm{s}$. At 8:01:40 AM (on the same day), your velocity is $2 \mathrm{~m} / \mathrm{s}$. What is your average acceleration over this time period?

Motion Graphs:

Each row of graphs below comprises a position vs. time graph, a velocity vs. time graph, and an acceleration vs. time graph. Every graph in a row conveys the same motion. For each row, use the one completed graph to fill in the incomplete graphs with reasonable curves. Some rows will have a wider variety of possible answers. Assume that all acceleration is constant.

