Practice - 18.4 Electric Field

1. What is the magnitude and direction of an electric field that exerts a 2.00×10^{-5} N upward force on a -1.75 µC charge?

E= F = 2×10-5N = 11.4×10 N Parnumed

2. What is the magnitude and direction of the force exerted on a 3.50 µC charge by a 250 N/C electric field that points due east?

F= gE = 3.5 x 10 6 (250N) = 8.75 x 10 N Eastward

3. Calculate the magnitude of the electric field 2.00 m from a point charge of 5.00 mC (such as found on the terminal of a Van de Graaff).

E = KQ = 8.99× 10 Nove (5×10-3) = 1.12×107N

4. What magnitude point charge creates a 10,000 N/C electric field at a distance of 0.250 m?

Q= Ecz = 10,000NE (0.250m)2 = 6,95×10°C

5. Calculate the initial (from rest) acceleration of a proton in a 5.00 \times 10⁶ N/C electric field. $m_p = 1.67 \times 10^{-27} \text{ kg}$

F=g E = 1.6×10-19 (5×106N) = 8×10-13

F=ma 3/8×10-13N=1.67×10-27/5(a)

a= 4,79×10 4 m/2

Solutions:

- 1. 11.4 N/C downward
- 2. 8.75×10^{-4} N east
- 3. $1.12 \times 10^7 \text{ N/C}$

- 4. $6.95 \times 10^{-8} C$
- 5. $4.79 \times 10^{14} \text{ m/s}^2$