Physics 200 (Stapleton) 1-D Kinematics Notes, Part 1

Name: _____

Kinematics: The study of motion without considering its causes.

Scalar: A quantity with magnitude but no direction.

Vector: A quantity with magnitude and direction. Numerically, may be positive or negative, depending on the chosen reference frame. Usually, signs follow the same conventions as an x/y grid... upward = positive, downward = negative, rightward = positive, leftward = negative.

 Δ = Delta = Final - initial = "change in". If x changes from 3m to 1m, then $\Delta x = 1m - 3m = -2m$.

$$x = x_0 + \overline{v} t$$

Preview of $\overline{v} = rac{v_0 + v}{2}$
Kinematics
Formulas $v = v_0 + at$
to Come
 $x = x_0 + v_0 t + rac{1}{2}at^2$
 $v^2 = v_0^2 + 2a (x - x_0)$

	Symbol	Meaning (what it's	Vector	Common	How to
	-	supposed to mean)	or	Units	estimate or
			Scalar?		convert
Position	x (or y,	An indicator of distance		Meters (m)	1 long step
	depending on	and direction from some			
	axis of motion)	chosen point of origin.			$0.305m \approx 1$ foot
Displacement	Δx (or Δy)	Final position minus		Meters (m)	1 long step
(often called	Sometimes = d	original position(e.g. x-			
"distance.")		x ₀); "Change in position"			$0.305m \approx 1$ foot
Distance	d	How far something has		Meters (m)	1 long step
		traveled from its original			
		position, disregarding			$0.305m \approx 1 foot$
		direction. Distance is not			
		negative.			
Distance	d	Sum of all of the distances		Meters (m)	1 long step
traveled		traveled on a trip.			
		Distance traveled is what			$0.305m \approx 1$ foot
		is recorded by a car's			
		odometer generally.			
Time	t	?		Seconds (s)	1s = "one
					mississippi"
Speed	\mathbf{v} (even though	How fast something is		Meters per	$1 \text{m/s} \approx$
	v is technically	moving. A ratio of		second	2.24 mph ≈ 1
	velocity)	distance traveled to travel		(m/s)	long step per
		time elapsed.			second
Velocity	v	Speed in a particular		Meters per	$1 \text{m/s} \approx 2.24$
		direction. A ratio of		second	mph
		displacement to travel		(m/s)	4.5m/s =
		time elapsed.			6min/mile pace

Practice: At t=5s, an object leaves position xo and travels to position x

Position: $x_0 =$ ____ x =____

Displacement:

Final Distance From Origin:

Distance Traveled:

Average Velocity:

Average Speed:

Average Velocity (symbol =): when we measure velocity, *average velocity* is what we will actually measure. This is the average speed of an object as it travels through a given distance. The object may speed up or slow down over that distance, but the average velocity that we calculate will not show this.

Instantaneous Velocity: the velocity of an object at a single point in time

"Initial velocity" symbol =

Final velocity symbol =

If I have a velocity of 3 m/s, what does that mean?

Explain how to walk with a velocity of 1m/s.

Average Velocity Formula (Hint: the units provide the formula)

Two Ways to Graph The Same Event

Position vs. time graph (below, left) [also called "distance vs. time"]:

- 1. For the first 2 seconds, Chuck walked steadily away from a motion sensor. During that time, he traveled 4m "forward."
- 2. For the next 4 seconds (from t=2 to t=6), Chuck stood still at the 4m distance mark.
- 3. During the last 4 seconds (t=6 through t=10), Chuck walked steadily back toward the sensor. During those two seconds, Chuck traveled 2m "backward."

Velocity vs. time graph:

- 1. During the first segment, Chuck traveled 4m forward (+4m) over a time of 2s. His average velocity for that interval is therefore 4m/2s = 2m/s. The velocity vs. time graph shows a constant velocity of 2m/s for the first two seconds.
- 2. During the second segment of data (2s to 6s), Chuck stood still (0m distance) over a time of 4s. His average velocity for that interval was therefore 0m/4s = 0m/s. The velocity vs. time graph shows a constant velocity of 0m/s for the second segment of data.
- 3. During the 3rd segment (6s to 10s), Chuck moves 4m backward (-4m). His average velocity for that interval is therefore -4m/4s = -1m/s. The velocity vs. time graph shows a constant velocity of -1m/s for the second segment of data (6s through 10s).

The small graphs, below, are actually more realistic than the large graphs. Why?

Velocity Practice: The graph on the right shows the movement of an object in front of a motion sensor. Determine the velocity of the moving object for lettered each segment, and use your calculations to fill out a velocity vs. time graph for the object (bottom of page).

1. Fill in the correct information for segment **A**, in the graph on the right.

-5

Time (seconds)

4. Use the distance vs. time graph above to fill in the velocity vs. time graph on the right.

5.	Fill in the correct information for segment A, in the
	graph on the right.

Displacement =	
$\Delta t =$	
Vaverage =	
Distance traveled =	-

6. Fill in the correct information for segment **D**.

Position at end of segment = _____

Displacement = _____

 $\Delta t =$ _____

Vaverage = _____

Distance	traveled	d =
----------	----------	-----

Position at end of segment = _____

7. Fill in the correct information for the entire trip (segments **A-D**).

Displacement = _____

 $\Delta t =$ _____

Vaverage = _____

Distance traveled = _____

Position at end of segment = _____

8. Use previous answers and the distance vs. time graph above to fill in the velocity vs. time graph on the right.

Position vs. Time Motion Matching Activity Questions:

On a motion sensor graph of position vs. time...

- 1. What does a positive (upward) slope tell you about the object's motion?
- 2. What does a negative slope indicate?
- 3. What does the steepness of a slope tell you about the object's motion?
- 4. What does a constant (straight line) slope indicate?
- 5. What might a smoothly curving line indicate?
- 6. Sketch a negative slope that is becoming less steep. What does this curve indicate about the motion of an object?
- 7. Sketch a negative slope that is getting steeper. What does this curve indicate about the motion of an object?
- 8. Sketch a positive slope that is becoming less steep. What does this curve indicate about the motion of an object?
- 9. Sketch a positive slope that is getting steeper. What does this curve indicate about the motion of an object?