\qquad

Kinematics: The study of motion without considering its causes.

Scalar: A quantity with magnitude but no direction.
Vector: A quantity with magnitude and direction.
Numerically, may be positive or negative, depending on the chosen reference frame. Usually, signs follow the same conventions as an x / y grid... upward = positive, downward $=$ negative, rightward $=$ positive, leftward $=$ negative.
$\Delta=$ Delta $=$ Final - initial $=$ "change in". If x changes from 3 m to 1 m , then $\Delta \mathrm{x}=1 \mathrm{~m}-3 \mathrm{~m}=-2 \mathrm{~m}$.

$$
x=x_{0}+\bar{v} t
$$

Preview of Kinematics Formulas $\quad v=v_{0}+a t$ to Come

$$
\begin{aligned}
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

	Symbol	Meaning (what it's supposed to mean)	Vector or Scalar?	Common Units	How to estimate or convert
Position	x (or y, depending on axis of motion)	An indicator of distance and direction from some chosen point of origin.		Meters (m)	$\begin{aligned} & 1 \text { long step } \\ & 0.305 \mathrm{~m} \approx 1 \text { foot } \end{aligned}$
Displacement (often called "distance.")	$\begin{aligned} & \Delta \mathrm{x}(\text { or } \Delta \mathrm{y}) \\ & \text { Sometimes }=d \end{aligned}$	Final position minus original position(e.g. x- \qquad		Meters (m)	$\begin{aligned} & 1 \text { long step } \\ & 0.305 \mathrm{~m} \approx 1 \text { foot } \end{aligned}$
Distance	d	How far something has traveled from its original position, disregarding direction. Distance is not negative.		Meters (m)	$\begin{aligned} & 1 \text { long step } \\ & 0.305 \mathrm{~m} \approx 1 \text { foot } \end{aligned}$
Distance traveled	d	Sum of all of the distances traveled on a trip. Distance traveled is what is recorded by a car's odometer -- generally.		Meters (m)	$\begin{aligned} & 1 \text { long step } \\ & 0.305 \mathrm{~m} \approx 1 \text { foot } \end{aligned}$
Time	t	?		Seconds (s)	$1 \mathrm{~s}=\text { "one }$ mississippi"
Speed	\mathbf{v} (even though v is technically velocity)	How fast something is moving. A ratio of distance traveled to travel time elapsed.		Meters per second (m/s)	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \approx \\ & 2.24 \mathrm{mph} \approx 1 \\ & \text { long step per } \\ & \text { second } \end{aligned}$
Velocity	v	Speed in a particular direction. A ratio of displacement to travel time elapsed.		Meters per second (m/s)	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \approx 2.24 \\ & \mathrm{mph} \\ & 4.5 \mathrm{~m} / \mathrm{s}= \\ & 6 \mathrm{~min} / \mathrm{mile} \text { pace } \end{aligned}$

Practice: At $t=5 \mathrm{~s}$, an object leaves position x_{0} and travels to position x

Position: $\mathrm{x}_{\mathrm{o}}=\ldots \quad \mathrm{x}=$
Displacement:
Final Distance From Origin:
Distance Traveled:
Average Velocity:
Average Speed:
Average Velocity $($ symbol $=\quad$): when we measure velocity, average velocity is what we will actually measure. This is the average speed of an object as it travels through a given distance. The object may speed up or slow down over that distance, but the average velocity that we calculate will not show this.

Instantaneous Velocity: the velocity of an object at a single point in time
"Initial velocity" symbol =
Final velocity symbol =

If I have a velocity of $3 \mathrm{~m} / \mathrm{s}$, what does that mean?

Explain how to walk with a velocity of $1 \mathrm{~m} / \mathrm{s}$.

Average Velocity Formula (Hint: the units provide the formula)

Two Ways to Graph The Same Event

Position vs. time graph (below, left) [also called "distance vs. time"]:

1. For the first 2 seconds, Chuck walked steadily away from a motion sensor. During that time, he traveled 4m "forward."
2. For the next 4 seconds (from $t=2$ to $t=6$), Chuck stood still at the 4 m distance mark.
3. During the last 4 seconds ($\mathrm{t}=6$ through $\mathrm{t}=10$), Chuck walked steadily back toward the sensor. During those two seconds, Chuck traveled 2 m "backward."

Velocity vs. time graph:

1. During the first segment, Chuck traveled 4 m forward $(+4 \mathrm{~m})$ over a time of 2 s . His average velocity for that interval is therefore $4 \mathrm{~m} / 2 \mathrm{~s}=2 \mathrm{~m} / \mathrm{s}$. The velocity vs. time graph shows a constant velocity of $2 \mathrm{~m} / \mathrm{s}$ for the first two seconds.
2. During the second segment of data (2 s to 6 s), Chuck stood still (0 m distance) over a time of 4 s . His average velocity for that interval was therefore $0 \mathrm{~m} / 4 \mathrm{~s}=0 \mathrm{~m} / \mathrm{s}$. The velocity vs. time graph shows a constant velocity of $0 \mathrm{~m} / \mathrm{s}$ for the second segment of data.
3. During the 3 rd segment (6 s to 10 s), Chuck moves 4 m backward (-4 m). His average velocity for that interval is therefore $-4 \mathrm{~m} / 4 \mathrm{~s}=-1 \mathrm{~m} / \mathrm{s}$. The velocity vs. time graph shows a constant velocity of $-1 \mathrm{~m} / \mathrm{s}$ for the second segment of data (6 s through 10 s).

The small graphs, below, are actually more realistic than the large graphs. Why?

Velocity Practice: The graph on the right shows the movement of an object in front of a motion sensor. Determine the velocity of the moving object for lettered each segment, and use your calculations to fill out a velocity vs. time graph for the object (bottom of page).

1. Fill in the correct information for segment \mathbf{A}, in the graph on the right.

Displacement $=$ \qquad
$\Delta t=$ \qquad
$\mathbf{V}_{\text {average }}=$ \qquad
Distance traveled $=$ \qquad
Position at end of segment $=$ \qquad
2. Fill in the correct information for segment \mathbf{B}.

Displacement $=$ \qquad
$\Delta \mathbf{t}=$ \qquad
$\mathbf{V}_{\text {average }}=$ \qquad

Distance traveled $=$

\qquad
Position at end of segment $=$ \qquad
3. Fill in the correct information for the entire trip (segments A-D).

Displacement $=$ \qquad
$\Delta t=$ \qquad
$\mathbf{V}_{\text {average }}=$ \qquad
Distance traveled $=$ \qquad
Position at end of segment $=$ \qquad
4. Use the distance vs. time graph above to fill in the velocity vs. time graph on the right.
5. Fill in the correct information for segment \mathbf{A}, in the graph on the right.

Displacement $=$ \qquad
$\Delta t=$ \qquad
Vaverage $=$ \qquad
Distance traveled $=$ \qquad
Position at end of segment $=$ \qquad

6. Fill in the correct information for segment \mathbf{D}.

Displacement $=$ \qquad
$\Delta t=$ \qquad
Vaverage $=$ \qquad

Distance traveled =

\qquad
Position at end of segment $=$ \qquad
7. Fill in the correct information for the entire trip (segments A-D).

Displacement $=$ \qquad
$\Delta \mathbf{t}=$ \qquad
Vaverage $=$ \qquad
Distance traveled $=$ \qquad
Position at end of segment $=$ \qquad
8. Use previous answers and the distance vs. time graph above to fill in the velocity vs. time graph on the right.

Position vs. Time Motion Matching Activity Questions:

On a motion sensor graph of position vs. time...

1. What does a positive (upward) slope tell you about the object's motion?
2. What does a negative slope indicate?
3. What does the steepness of a slope tell you about the object's motion?
4. What does a constant (straight line) slope indicate?
5. What might a smoothly curving line indicate?
6. Sketch a negative slope that is becoming less steep. What does this curve indicate about the motion of an object?
7. Sketch a negative slope that is getting steeper. What does this curve indicate about the motion of an object?
8. Sketch a positive slope that is becoming less steep. What does this curve indicate about the motion of an object?
9. Sketch a positive slope that is getting steeper. What does this curve indicate about the motion of an object?
